The distances to quasars

Mark 205

Figure 1: False colour image of Markarian 205, a peculiar galaxy imaged in X-rays, shown with several quasars enveloped within its hydrogen gas envelope. Credit: H. Arp, “Seeing Red”, Apeiron.

What can we say about the distances of quasars? This is an important question. According to standard big bang cosmology, due to cosmological expansion of the Universe, the very high redshifts of quasars place them at very great distances. If however even one example could be shown that contradicts the standard “greater the redshift the greater the distance” rule then it would undermine the fundamental foundation of the Standard Model of big bang cosmology. It follows that most of the very high redshift objects in the cosmos may not be so distant. And that would radically change our interpretation of the alleged big bang universe.

One such example that contradicts the Standard Model is shown in Fig. 1. The late Halton Arp spent his 60-year research career looking at peculiar galaxies, which he believed contradicted the standard big bang assumptions. Markarian 205 is such a peculiar galaxy within which are seen three quasars. Markarian 205 has a redshift of z = 0.07 but the quasars z = 1.26, 0.63 and 0.46. According to the Standard Model the high redshift quasars should be many billions of light-years behind Markarian 205, but they are clearly seen enveloped in the X-ray emitting hydrogen gas around the galaxy (as indicated by the white arrows).

Lyman-α forest

Arp’s hypothesis, that quasars and active galactic nuclei (AGNs1) have a very large intrinsic component to their redshifts, which is unrelated to their cosmic distance from Earth, is strongly rejected by the Standard Model (big bang) community. In relation to this question I received the following from a reader of my website.2

It is claimed, that the many lines of the Lyman alpha forest in the spectrum of most quasars prove that they are very far away. Also, it is claimed that increasing Lyman alpha forest lines is connected with increased magnitude of redshift, so supporting large distances. Is that observational true?

Continue reading