Planetary system formation: exposing naturalistic storytelling

Attempts to explain how stars form naturalistically have encountered significant challenges because the known laws of physics indicate it is virtually impossible.1  There is a remote possibility for star formation via the mechanism of a nearby supernova, but dark matter is generally invoked as the ‘unknown god’, a ‘god of the gaps’ to make it work, because such events are extremely unlikely.Without this ‘unknown god’ in their uncreated universe, the formation of the star at the centre of a planetary nebula is essentially impossible. It also follows that planet formation has a similar problem. How do planets form in a nebula of gas and dust, which according to the known laws of physics cannot condense a star at its centre?

More importantly, how do you get a solar system with planets in habitable zones?  Radiation from the newly born star would drive out any excess gas and dust from the path of the planets via photo-evaporation and stellar winds, making the formation of planets very unlikely. The planets allegedly condense via the core accretion model resulting in (in some cases) a habitable planet in the habitable zone, at the right distance from the parent star where water can exist in its liquid state.3 Then water is assumed to condense on the surface of that new planet, but by what mechanism?  Ultimately this is a question about life elsewhere in the Universe. But I digress.

By product of star formation

solar sytem formation

Figure 1: Illustration of the star formation story. CREDIT: Bill Saxton, NRAO/AUI/NSF

Standard astrophysical dogma is that planets form around stars as a natural by-product of the star formation process.4 But there are several problems.

For the initial molecular cloud to collapse, and eventually form a star, the cloud must eliminate any magnetic fields (due to unpaired charges) that oppose the collapse. The alleged process, which removes any magnetic field induced pressure from molecular clouds, entails the ions that carry the magnetic fields slowly diffusing out of the cloud, taking the magnetic fields with them.5

But these same magnetic fields are invoked to shuttle the angular momentum from the newly forming star, at the centre of the cloud, outward into the disk region of the solar nebula, to overcome another unsolved problem. This is the angular momentum problem, where the putative central star should have 99% of the angular momentum of the collapsing cloud, but in real observed solar systems like our own, 99% of the angular momentum resides in the planets, hence in the disk of material around the central star. Their suggested naturalistic solution to this problem is just-so storytelling. See below. Continue reading