No CMB shadows: an argument against the big bang that can no longer be sustained

I have previously made the argument that the cosmic microwave background (CMB) radiation, ‘light’ allegedly from the big bang fireball, casts no shadows in the foreground of galaxy clusters.1 If the big bang were true, the light from the fireball should cast a shadow in the foreground of all galaxy clusters. This is because the source of the CMB radiation, in standard big bang cosmology, is what is known as the “last scattering surface“.

The last scattering surface is the stage of the big bang fireball that describes the situation when big bang photons cooled to about 1100 K. At that stage of the story those photons separated from the plasma that had previously kept them bound. Then expansion of the universe is alleged to have further cooled those photons to about 3 K, which brings them into the microwave band. Thus if these CMB photons cast no shadows in front of all galaxy clusters it spells bad news for the big bang hypothesis.

Fig 1: Schematic of the Sunyaev-Zel’dovich effect that results in an increase in higher energy (or blue shifted) photons of the CMB when seen through the hot gas present in cluster of galaxies. Credit: astro.uchicago.edu/sza/primer.html

The CMB radiation shadowing effect, or more precisely the cooling effect, by galaxy clusters is understood in terms of the Sunyaev–Zel’dovich Effect (SZE). This is where microwave photons are isotropically scattered by electrons in the hot inter-cluster medium (ICM) (see Fig. 1) via an inverse Compton process leaving a net decrement (or cooling) in the foreground towards the observer in the solar system. Of those CMB photons coming from behind the galaxy cluster less emerge with the same trajectory due to the scattering. Even though the scattered photons pick up energy from the ICM the number of more energetic CMB photons is reduced. After modelling what this new CMB photon energy (hence temperature) should be, a decrement can, in principle, be detected.

Starting around 2003 some published investigations, using this SZE, looked for the expected shadowing/cooling effect in galaxy clusters. No significant cooling effect was found, by multiple studies, including the WMAP satellite data.2 This was considered to be very anomalous, significantly different from what was expected if the CMB radiation was from the big bang fireball. The anomaly was even confirmed by the early Planck satellite survey data in 2011.3

Continue reading

Synchronised dance of dwarf galaxies stumps big bang boffins

Dwarf galaxies around our galaxy the Milky Way, the Andromeda galaxy and now Centaurus A galaxy provide further evidence that the big bang belief is ‘baloney’. These dwarf galaxies have now been shown to orbit their parent galaxies in a synchronized manner, whereas according to the big bang idea, that should just not be the case.

The galaxy Centaurus A is viewed by the European Southern Observatory in 2012. Scientists studying the galaxy and several dwarf galaxies surrounding it are stumped by their behavior. (AFP photo / ESO)

The standard big bang cosmology has the formation of galaxies resulting from the collapse of a chaotic cloud of matter. As a result, it is expected from a secular worldview, that when large galaxies formed, such as our Milky Way galaxy and the galaxy Centaurus A, that small satellite dwarf galaxies would form around them but that their orbits would be essentially random, reflecting the chaotic nature of their origin.

In an online article on this recent discovery we read (all bold emphases in citations from this article are my additions):1

The model predicts that during formation, dwarf galaxies should both appear and move randomly around their host galaxies.

“There should be pure chaos and not order,” said Müller. “To find everywhere we look this extreme order where we expect disorder — this is strange.”

The big bang has long needed the hypothetical, never-observed stuff known as ‘dark matter’ and ‘dark energy’ to make it work. This latest discovery just compounds the difficulties, even with these ‘fudge factors’ already in place. But if they don’t assume dark matter they would not get a galaxy to form. And when they do assume its presence in the galaxy the modelling indicates that several large satellite galaxies should form with chaotic orbits.

Note the admission in what follows about ‘tooth fairies’ in regard to dark matter and dark energy. Also, the comment about the standard big bang cosmology collapsing “like a house of cards” if there continues to be no evidence of these:1

“At this point, there is a mountain of such contradictory details that we’ve mostly swept under the proverbial rug,” McGaugh said. “Dark matter and dark energy have been around so long that people forget that we backed into them. They’re tooth fairies that we invoked early on to make things work out.” And if no one finds evidence of dark matter, he said, then “the paradigm collapses like a house of cards.”

This is what I have been warning about for some time.  The article goes on:

So perhaps Müller and his team have found yet another statistical outlier, or perhaps isolated galaxies work differently from large groups of galaxies. Or maybe they have found yet another problem with the generally accepted theory of cosmology.

The Cosmological Argument and an eternal big bang universe

The beginning of the universe in time is the single biggest bug-bear for the secular cosmologists. They must eliminate the need for the beginning in order that they can eliminate the need for the Creator Himself. If you have an origin in time, you can argue that anything that exists, and had a beginning in time, also had to have a Creator.

This is the Cosmological Argument. And if the big bang cosmologist agrees the universe exists and began to exist at some moment in time past, then it also had to have had a cause–a first cause. That first cause can only have been an infinite Creator, who is greater than the universe itself.

Some long age/old earth Christian apologists use this argument starting with the assumption that the big bang was a real historical event. That also is a flawed approach even though they use valid logic after the fact. Their initial assumption–their starting premise–is not a fact (or cannot be proven to be a fact) and hence the rest of their argument fails.

But what would these apologists, like W.L. Craig or H. Ross, say when the secular big bang theorists continue to push towards the elimination of the origin in time, even the big bang beginning itself?

Astrophysicist Ethan Siegel is quoted (September 21, 2017) in an article in Forbes titled “The Big Bang Wasn’t The Beginning, After All”:

The conclusion was inescapable: the hot Big Bang definitely happened, but doesn’t extend to go all the way back to an arbitrarily hot and dense state. Instead, the very early Universe underwent a period of time where all of the energy that would go into the matter and radiation present today was instead bound up in the fabric of space itself. That period, known as cosmic inflation, came to an end and gave rise to the hot Big Bang, but never created an arbitrarily hot, dense state, nor did it create a singularity. What happened prior to inflation — or whether inflation was eternal to the past — is still an open question, but one thing is for certain: the Big Bang is not the beginning of the Universe! [my emphases added]

He states his belief as if fact, i.e. that the big bang definitely happened, even though cosmology is not actually science. See Cosmology is Not Science! His theory has no super-dense initial singularity.  But he assumes, as fact, an early period of cosmic inflation (which is a best speculative), which eventually finished and gave rise to the hot big bang fireball that the rest of this universe allegedly evolved from. He leaves open the question whether the universe was eternally inflating in the past, but the one thing he is certain of is that the big bang was not the beginning of the universe. Others have proposed an eternal universe that eventually explodes in a big bang.

Eliminate the need for the big bang to be the beginning in time and eventually they hope they can eliminate any need for the Creator Himself. After all didn’t the universe create itself?

Quite obviously not. For, in the beginning God created the universe (Genesis 1:1).

Related Reading

Book Review: “Setting Aside All Authority” by Christopher M. Graney

The book “Setting Aside All Authority” comprises 10 chapters, 270 pages. The last half of the book is largely made up of two appendices: (A) the first English translation of Monsignor Francesco Ingoli’s essay to Galileo (disputing the Copernican system on the eve of the Inquisition’s condemnation of it in 1616) and (B) excerpts from the Italian Jesuit astronomer Giovanni Battista Riccioli’s reports on his experiments with falling bodies. The book is published by the University of Notre Dame, 2015.

Cover of the book. The cover image is taken from Riccioli’s New Almagest (1651). Note the heliocentric system (top left) compared to the Tychonic hybrid geocentric system (bottom right).

The main thesis of the book challenges the notion that around the time of Galileo, and the beginning of the Copernican revolution, opponents of the heliocentric worldview, championed by Galileo, were primarily motivated by religion or dictates from the authority of the Roman Catholic Church.

The author, Christopher M. Graney, uses newly translated works by anti-Copernican writers of the time to demonstrate that they predominantly used scientific arguments and not religion in their opposition to the Copernican system. Graney argues that it was largely a science-versus-science debate, rather than church authority-versus-science as often incorrectly portrayed.

In the 1651, the Jesuit Giovanni Battista Riccioli published his book the New Almagest wherein he outlined 77 arguments against the Copernican system (pro-geocentrism) and 49 arguments in favour of it. Most arguments against the Copernican heliocentric system could be answered, at that time, but Riccioli, using the then available telescopic observations of the size of stars, was able to construct a powerful scientific argument that the pro-Copernican astronomers could not answer without an appeal to the greatness of God.

Graney largely uses Riccioli’s New Almagest, which argues in favour not of the Ptolemaic system but of the hybrid Tychonic system, where the Earth is immobile at the centre of the universe, the sun, the moon and the stars circle the earth; but the planets circle the sun. Riccioli built on the work of the Danish astronomer Tycho Brahe, and built a strong scientific case against the heliocentric system, at least through the middle of the seventeenth century, which was several decades after the advent of the telescope.

The main two arguments presented in the book, both scientific, are the size of stars and the effect on falling bodies.

Falling bodies

If the earth were rotating, then a falling body should hit a point on the surface of the earth at a definite distance from a vertical line to the surface, if dropped vertically. The same argument could be made for cannon balls fired in different directions on the earth’s surface. These type of discussions and arguments carried on for a century, and even Isaac Newton got involved. What we now know as the Coriolis force, a ‘fictitious’ force, resulting from the rotation of the planet on the fired or dropped objects could not be measured with the required precision in the 17th century.

Continue reading

The Big Picture: On the Origins of Life, Meaning and the Universe Itself? Part 9

Part 9 of my review of the book: “The Big Picture: On the Origins of Life, Meaning and the Universe Itself,” by Sean M. Carroll. Part 8 is found here.

Purpose without a Creator

The next chapter entitled “Emergent Purpose” is about finding some sort of ‘purpose’ as an emergent property of evolution. He is quite clear that evolution itself is undirected but suggests that we humans can find some purpose in it.

He starts out with a question “Why do giraffes have such long necks?” and gives 4 possible answers, 3 of which evolutionist would believe. Option 1 he declares incorrect, which is Lamarckian, yet actually closer to Darwin’s original idea. Options 2 is the common way of explaining neo-Darwinian evolution, with mutations conferring better fitness. Option 3 is about sexual selection and option 4 is in line with his overall message of the book.

“Given the laws of physics, and the initial state of the universe, and our location in the cosmos, collections of atoms in the shape of long-necked giraffes came into existence 14 billion years after the Big Bang.” (pp.291-2)

None of this sentence has any credibility. Only by assuming everything to be true in the evolution story from the big bang to current day could you write this. So it is not a science statement but a theological statement. He says it avoids any particular evolutionary story, but it is not hard to imagine that the words “came into existence” does not mean at the hands of the Creator, but rather is a big bang. Otherwise there would be no need to start in the big bang, nor include the words “our location in the cosmos”. He says this is a poetic-naturalism way of speaking about emergent properties of the biological world. But that could only be true if you could demonstrate experimentally that each requirement in the statement is true.

Then from this sort of story, which he calls “the fundamental description of reality” (p.292) because of the big bang, expansion of the universe and the increase in entropy with time, he says

“… these emergent pictures invoke words like ‘purpose’ and ‘adaptation,’ even though those ideas are nowhere to be found in the underlying mechanistic behavior of reality” (p.293)

And

“How could evolution, which itself is ultimately purely physical, bring these utterly new kinds of things into existence? It’s a natural thing to worry about. The process of evolution is unplanned and unguided.”

“There is no general principle along the lines of ‘new kinds of things cannot naturally arise in the course of undirected evolution.’ Things like ‘stars’ and ‘galaxies’ come to be in a universe where they formerly didn’t exist. Why not purposes and information?” (p.293)

Continue reading

The Big Picture: On the Origins of Life, Meaning and the Universe Itself? Part 6

Part 6 of my review of the book: “The Big Picture: On the Origins of Life, Meaning and the Universe Itself,” by Sean M. Carroll. Part 5 is found here.

The Core Theory

Carroll spends several chapters discussing the quantum mechanical framework for the Core Theory, as he calls it. Quantum mechanics has been an extremely successful physical theory exquisitely predicting with enormous precision some parameters in particle physics. But what many people have heard of quantum theory is more about the various interpretations applied by physicists (e.g. Bohr’s abstract physical description, or, Everett’s many-worlds) to the way the theory might work beneath what we can measure.

Regardless of the correct interpretation it has enjoyed enormous success as a theory of physics in what is called the standard model of particle physics. The second very successful theory is general relativity—Einstein’s theory of gravity. Both work extremely well in their respective domains of operation, but outside that, in the realm of what is called quantum gravity neither operate nor has a theory been found to unite them. But that is exactly what Stephen Hawking and others have been seeking, to have the Universe begin in a quantum fluctuation of a meta-stable false vacuum.

But even though we have this limitation, in the realm of what humans can measure, Carroll has faith and writes:

“What we can do is show that physics by itself is fully up to the task of accounting for what we see.” (p.179)

However he admits that one class of particles not part of the current Core Theory are those that make up “dark matter” in the Universe. Such alleged weakly interacting putative particles are allowed for in the Core Theory because they are so weakly interacting with normal atomic matter that they are hard to detect. I would argue that dark matter and other dark entities are a philosophical construct used to keep the standard big bang cosmology from being discredited.1 Dark matter was first needed to explain the dynamics of spiral galaxies. Now it seems that it is no longer needed, when standard physics is applied correctly.2 Continue reading

The Big Picture: On the Origins of Life, Meaning and the Universe Itself? Part 4

Part 4 of my review of the book: “The Big Picture: On the Origins of Life, Meaning and the Universe Itself,” by Sean M. Carroll. Part 3 is found here.

Understanding the World

Carroll devotes a few chapters to assessing how well we understand the world. He introduces us to Rev. Thomas Bayes who, in the latter part of his life, studied probability. He was published posthumously on the subject. His work has become widely used in mathematics, principally statistics, and also in physics. The subject has become to be known as Bayesian inference or Bayesian probability.

Bayes’ main idea involves how to treat the probability of a proposal being correct in the light of new evidence becoming available. In physics we rely on what we already know, or what we think we have established as foundational and we build upon that. When we get new information that could change our view we need to update what we believe is the probability of the hypothesis being correct in light of that new information. That probability is what is called a credence, or the degree of belief that we hold that we are correct.

So Bayesian inference attempts to apply a quantitative value to what we might infer from our attempts to explain the physical world. It is the basis of scientific investigation. In terms of experimental discoveries it is easy to see how this might apply. We can never prove any hypothesis or theory correct. All we can hope to do is update our credence, meaning to increase the probability of a theory being correct.  In physics a threshold is established of 5σ (5 sigma) above which it is said that a discovery has been made. Statistically that is like saying there is only 1 in a 3.5 million chance that the signal isn’t real and thus the theory is wrong. That is a very low probability indeed. But some discoveries have been made at the level of 3σ or less.I know of one hypothesis that had a 6σ probability yet it turned out to be wrong.2

But things don’t always work out to be correct, even with a statistical probability above 5σ. Any hypothesis may be refuted but it can never be proven. Do you remember the claim of faster than light neutrinos in 2011? The OPERA team’s experimental results indicated a 6σ level of confidence, which is much higher than the 5σ usually required for new particle discoveries. But in the following year, as many expected (because we don’t expect any particle to break the speed of light limit), an error was found in the experimental analysis resulting from a loose fibre optic cable, and that meant those neutrinos obeyed the universal speed limit. When the new information came in the Bayesian credence could be updated to nearly zero. Continue reading