SUSY is not the solution to the dark matter crisis

On August 19, 2016, the “SUSY Bet” event took place in Copenhagen at the conference on Current Themes in High Energy Physics and Cosmology at the Niels Bohr International Academy. An adjudication of the wager on supersymmetry (SUSY) first made in 2000 was given. The detail of wager is explained in the image below.


The bet involved two aspects of supersymmetry theory.1

  1. That after 10 years (from 2000) the Large Hadron Collider (LHC) would have collected enough experimental data to confirm or deny the existence of the supersymmetric particles that the theoretical physicists were thinking about at that time.
  2. That supersymmetric particles with sufficiently low masses would be discovered like “sitting ducks” (as Gerard ‘t Hooft put it).

At the event, the Yes side of the bet, who believed the particles would be detected, conceded the loss of the bet to the No side. The bet was meant to be decided on June 16th 2016 if no SUSY particle was detected after effectively 10 years of operation of the LHC. The adjudication of the bet was extended by the ‘No’ side by an addition of 6 years due delays in getting the LHC online, part of which was a delay due to an explosion, which caused a delay of 2 years.

On the larger question of the significance of the negative LHC results, a recorded video statement by Nobel Laureate Gerard ‘t Hooft (who had bet against SUSY) can be viewed above, and a statement by Stephen Hawking (not in on the bet, but in the audience) claimed that if arguments for SUSY were correct, the LHC should have seen something, so they think nature has spoken and there’s something wrong with the idea.
Continue reading

Dark radiation in big bang cosmology

Keeping Science in Darkness

Sometimes the existence of a new ‘particle’ in physics has been proposed long before it was discovered by an experimentalist in a lab experiment. Some examples of this are the anti-electron (positron) proposed by Paul Dirac in 1927 and discovered in 1932; the neutron, predicted by Ernest Rutherford in 1920, and discovered by James Chadwick in 1932; the pi meson discovered by C. F. Powell’s group in 1947 but predicted by Hideki Yukawa in 1935; and in 2012 a particle was detected exhibiting most of the predicted characteristics of the Higgs boson, which was predicted by Peter Higgs and five others in 1964.  For their prediction, Peter Higgs and François Englert, were awarded the Nobel Prize in Physics in 2013.

In astrophysics such a new ‘particle’ could be the planet Neptune. Its existence was mathematically predicted by Urbain Le Verrier before it was directly observed in 1846 by Johann Gottfried Galle at the Berlin Observatory. (There was some dispute over credit as John Couch Adams from Cambridge had separately made predictions on the position of the planet.)

Those predictions, which led to successful outcomes, were based on the established laws of nature; for Neptune it was Newton’s gravitational theory, and for particle physics, the newly developing quantum theory. Continue reading

Dark Matter and the Standard Model of particle physics—a search in the ‘Dark’

The Standard Model of particle physics (SM) has been very successful at describing the elementary particles and the forces that bind them together. However, the Standard Model presents some significant problems for big bang theorists. This is because the SM does not contain any Dark-Matter particles, and the neutrinos in it are described as exactly massless. Which means that in its present form, it is in clear contradiction with the big bang model as required by various observations.

Those observations have led to the need to include Dark Matter in the standard (ΛCDM1) big bang model, particularly during the period of nucleosynthesis, just after the big bang beginning when the light elements were allegedly formed from hot hydrogen. Therefore, the Standard Model of particle physics is in stark disagreement with the requirements necessary for the formation of the first elements in the alleged big bang.

Where are the Dark-Matter particles?

All challenges to the standard ΛCDM big bang model have been met and overcome, so far, by assuming ‘unknowns’ particularly Dark Matter and Dark Energy, wherever and whenever needed. Astronomical observations have led big bang astronomers and cosmologists to look for these new unknown Dark-Matter particles to solve many of their problems resulting from such observations; for example, the formation of stars, galaxies and galaxy clusters, the testing of the big bang model with type Ia supernova measurements, the angular power spectrum of the CMB anisotropies, galaxy rotation curves, and in particular, as focussed on here, Big Bang Nucleosynthesis (BBN).2 Continue reading