Evidence against the big bang — new video

A new video has been released by Real Science Radio (RSR), and available in DVD, Download, and Blu-ray formats! I recommend you buy and watch it. I made some critical suggestions during its production and find it to be an excellent product. To download it or buy a DVD or Blu-Ray disk click this link RSR’s Evidence Against the Big Bang.

evidence-against-bb-banner-rsrDuring RSR’s on-air debate with Lawrence Krauss, this leading big bang proponent said that, “All evidence overwhelmingly supports the big bang“. So Bob Enyart began assembling a bulleted list of mostly peer-reviewed scientific evidence against the paradigm. That assemblage led to the production of this video RSR’s Evidence Against the Big Bang!

The makers PRODUCT DESCRIPTION is as follows.

Evidence Against the Big Bang – Blu-ray, DVD or Download

When people wonder what evidence exists for the Big Bang, many ask Google. And not surprisingly, when folks search for: evidence against the Big Bang, Google sends most of them on over to Real Science Radio’s List of Evidence Against the Big Bang. Yet this is surprising: When NASA urges you to trust the theory because of its confirmed “predictions”, folks who Google: big bang predictions, also find RSR’s article ranked #1!

This video can help prepare you for the coming revolution in cosmology. The nine pieces of evidence presented herein are bringing people out of the failed science of the 1900s and into the 21st century demanding truth regarding both the origin of universe and ultimately, the origin of ourselves.

And now, let’s leave out the word “predictions” and leave out the word “against”. Increasingly, when scientists and others just Google: big bang evidence, the search engine is sending them on over to RSR’s evidence AGAINST the Big Bang! So whether you are a creationist or even if you’re dug in still defending the old scheme on the origin of the cosmos, you’ll want to watch this video to catch up with the latest amazing science on the big bang!

Recommended Articles

Antimatter matters for the big bang origin of the Universe

In what physicists have called a “technical tour-de-force”, scientists have for the first time made measurements of how antimatter atoms absorb light.1

The ALPHA antimatter experiment at CERN has measured an energy transition in anti-hydrogen.

The ALPHA antimatter experiment at CERN has measured an energy transition in anti-hydrogen. Credit: CERN

Researchers from the ALPHA collaboration team at CERN, the European particle physics laboratory outside Geneva, collected cold antihydrogen atoms in a magnetic “bottle” and irradiated them with an ultraviolet laser to test what frequency of light is needed to excite the antimatter atoms into an excited state. This was done to test to see if antimatter atoms behave the same way as their normal matter counterparts. No discrepancy (a null result) was found with standard theory, which predicts that antihydrogen should have the same energy levels as normal hydrogen.

The null result is still a thrill for researchers who have been working for decades towards antimatter spectroscopy, the study of how light is absorbed and emitted by antimatter. The hope is that this field could provide a new test of a fundamental symmetry of the known laws of physics, called CPT (charge-parity-time) symmetry.

CPT symmetry predicts that energy levels in antimatter and matter should be the same. Even the tiniest violation of this rule would require a serious rethink of the standard model of particle physics.

Cosmological implications

So what? you might ask! Continue reading

Does the new much-faster-speed-of-light theory fix the big bang’s problems?

A recent paper1 by Niayesh Afshordi and João Magueijo asserts that they have discovered a testable cosmology wherein during a “critical” cosmological phase of the early universe the maximal speed of propagation of matter (and hence light) was enormously much faster than the current speed of light (c) and faster than the speed of gravity, which in Einstein’s theory is the canonical speed c. They revisit what has become to be known as varying speed of light (VSL) models, in contrast to the now popular cosmic inflation models. They believe light travelled much faster just after the big bang than it does now and have developed a mathematical model of a big bang universe only a miniscule fraction of a second after the alleged hot beginning of the Universe.

822px-joao_magueijo_p1020608

João Magueijo at the journée de la Science at the EPFL, 11 November 2005. Credit: Wikipedia

The big bang model has many problems, but the biggest and most difficult to solve is what is known as the ‘horizon problem’.2 Cosmic inflation has been invoked to solve this problem. Afshordi and Magueijo agree that,

… the Big Bang model of the Universe remains an unfinished work of art. Many of its late-time successes can be traced to the initial conditions postulated for its early stages, and these are put in by hand, without justification, other than to retrofit the data. The main culprit for this shortcoming is the so-called horizon problem: the cosmological structures we observe today span scales that lay outside the ever-shrinking “horizons” of physical contact that plagued the early universe. This precludes a causal explanation for their initial conditions.1 (emphases added)

Cosmologist believe that structure in the universe was seeded from initial density variations in the early universe. But for structures (clusters of galaxies, for example) to naturalistically form gravity must propagate over the scale of any structure in the timescale available to it at the past epoch when the structures were allegedly built. In addition we observe a uniform temperature across all the sky in the cosmic microwave background (CMB) radiation, yet sources on opposite sides of the observable universe have not had time to exchange energy, at the constant speed of light c, in the time available in the big bang universe. That is, they have not had to time to come into thermal equilibrium. These limitations are what are known as ‘horizons’. The major problem with the big bang model is that cosmic inflation scenarios are inserted by hand, to overcome these ‘horizons’ but without any justification for why inflation started and why it stopped. Quite obviously if the speed of light were infinite there would exist no such ‘horizon’ to thermal equilibration of the Universe. Continue reading

Quantum theory to eliminate the beginning of the Universe

Genesis begins with “In the beginning God …”. But those who deny the creation of the Universe by God, the self-existent Creator, as described in Genesis–the book of beginnings–the first book of the Bible, would very much like to eliminate the beginning itself.

singularity

Mathematical illustration of a fictional singularity

I have reported before on various attempts to eliminate the beginning, even a big bang beginning in a singularity.1,2 Those who do attempt such a thing, think if they can find a mathematical description by way of some quantum gravity theory then it must also follow that the Creator is not needed and that that somehow eliminates Him.  As an example of this the following was stated in 2015 on the Phys.org news site in relation to some theoretical research, which I have previously reported1 on, but it is worth reiterating. It was stated that

The universe may have existed forever, according to a new model that applies quantum correction terms to complement Einstein’s theory of general relativity. The model may also account for dark matter and dark energy, resolving multiple problems at once.3 (emphases added)

The desire is there for an eternal universe because it eliminates the Creator. What is interesting in this case is that it also intends to eliminate the need for dark energy and dark matter, which I have long said are fudge factors. There is no laboratory evidence for their existence; they are only invoked in cosmology and astrophysics because the standard model just does not describe what we observe without them. This is an admission that that is the case.

The other big big bang problem is the singularity itself. No one has a clue about the physics that should have operated if the fictional singularity was once reality. The mathematical descriptions used in modern cosmology—developed from Einstein’s general relativity—just don’t work when time and space no longer exist as is believed to be the case in the alleged singularity.4 Continue reading

Now the expansion of the universe is not accelerating

In 2011 the Nobel Prize in Physics was awarded to three astronomers for their discovery, as part of two separate teams which published their results around 1998 that they claimed showed that the Universe is expanding at an accelerating rate. Also they claimed the existence of some sort of mysterious ‘dark energy’ that was driving the expansion at a faster and faster rate.

Hubble image of supernova remnant N 49 in the Large Magellanic Cloud. Credit: NASA and The Hubble Heritage Team (STScI/AURA)

Hubble image of supernova remnant N 49 in the Large Magellanic Cloud. Credit: NASA and The Hubble Heritage Team (STScI/AURA)

The interpretation of the 1998 data depended heavily on the big bang cosmological theory they applied and the assumption that it was the correct theory to describe the structure and time evolution of the Universe. It also depended heavily on the assumption that the type Ia supernova explosions that they used are reliable standard “light bulbs”, i.e. that those stellar explosions all were accurately chosen to have the same characteristic intrinsic absolute brightness.1 The latter, however, we now know is not the case.2

It has been shown that the stellar masses of the stars that result in the type Ia class of supernova are not so well-defined that they all fall within a narrow range as to give a clear standard in terms of the intrinsic brightness of the resulting explosions and hence the type Ia are not a uniform reference. Also as I have previously indicated circular reasoning was employed in the choice of the candidate supernova to be considered.2,3 The cosmology under test was used to choose the candidate Ia supernovae and then those chosen were used to test the same cosmology.

A new study, published in the Nature journal Scientific Reports, on a data set ten times larger than the original studies used (5 years ago) has been carried out.4

Now, a team of scientists led by Professor Subir Sarkar of Oxford University’s Department of Physics has cast doubt on this standard cosmological concept. Making use of a vastly increased data set – a catalogue of 740 Type Ia supernovae, more than ten times the original sample size – the researchers have found that the evidence for acceleration may be flimsier than previously thought, with the data being consistent with a constant rate of expansion. (emphasis added)

Continue reading

Big bang birthed from Cosmic Egg

–a pagan story of origins

In 1927 Roman Catholic priest Georges Lemaîtredeveloped his theory of the expanding Universe and published a paper describing his theory,2 which envisioned a universe with all galaxies moving away from all other galaxies. At that time the Universe was considered to be static. Lemaître solved the gravitational field equations of Einstein’s General Relativity theory for the Universe, taking into account the work of Alexander Friedmann, who published in 1922 (but died in 1925). From that he concluded the Universe must be expanding or contracting.  Nowadays that formalism for the family of models they produced is called the Friedmann-Lemaître solution describing the big bang universe. From that Lemaître developed the idea of the Universe having a unique origin at some past moment of time.

lemaitre

Figure 1: Belgian priest Reverence Monsignor Georges Henri Joseph Édouard Lemaître (17 July 1894 – 20 June 1966) was an astronomer and professor of physics at the Catholic University of Leuven. Credit: Wikipedia

In 1931, Lemaître described the Universe as exploding from a ‘Cosmic Egg’, which was like a giant atom, with all the mass of the Universe. His idea was that the myriads of galaxies of stars in the Universe formed out of and expanded out from that initial state of the ‘Cosmic Egg’.  Lemaître imagined that the Universe started from a fluctuation of his first quantum of energy (his ‘Cosmic Egg’) when space and time were not yet defined.3

You might think that Lemaitre looked to the Scriptures, to Genesis, for a clue here (for an origin in time) but his reasoning was man’s not God’s. His assumption was a finite unbounded universe, having no centre nor edge–that is, there are no preferred points in his universe. And by winding time backward one could imagine that all points would come to a common point at a finite period of time in the past. Thus he reasoned that this must mean that the Universe had a beginning in time—hence a creation at a moment in the past. Apparently Sir Arthur Eddington, a Quaker, found Lemaître’s idea of creation philosophically repugnant, as there was a prior belief among cosmologists at the time of the Universe eternally existing.

From his quantum of energy—which he called a “primeval atom”4—his theory predicted that this was the material from which all matter—the stars and galaxies—was derived. He predicted that some form of background radiation, even cosmic rays, would be found, the leftovers of that initial explosion of matter into all the Universe.5 That is not accepted by big bang astronomers today.

Eventually from his theory the origin of the Universe was formalised not from a ‘Cosmic Egg’ but from a singularity of zero dimensions with the Universe smoothly expanding out of it, and beginning in an intensely hot fireball stage. It wasn’t until 1949 that this was, in derision, called a ‘big bang’ on a BBC radio program by Sir Fred Hoyle, while discussing what his opponents believed. Hoyle was very much against any idea of a big bang universe, as he firmly believed in the steady state model.

Now the story so far, many people know. But do they know that Lemaître was cheated out of his claim to fame?6 Continue reading

A cosmic dragonfly

A galaxy, known as Dragonfly 44, first detected in 2015 using the Dragonfly Telephoto Array in New Mexico by Professor Peter van Dokkum is now claimed to be made of 99.99% dark matter.1 It is a galaxy where very few stars can be seen. It took a two-hour exposure using one of the very biggest telescopes on Earth, one of the Gemini telescopes at the W. M. Keck Observatory in Mauna Kea, Hawaii, to get a picture of this wispy galaxy as shown in Fig. 1 below.

cosmic-dragonfly

Figure 1: Astronomers photographed the ultradiffuse galaxy Dragonfly 44 using the Gemini Multi-Object Spectrograph (GMOS) on the 8-meter Gemini North telescope in Mauna Kea, Hawaii. Credit: Pieter van Dokkum, Roberto Abraham, Gemini Observatory/AURA

Professor van Dokkum from the Astronomy Department and the Physics Department of Yale University is not only an astrophysicist but also a photographer of insects, particularly dragonflies.It is a strange coincidence, or is it, to find that one of his particular interests in the cosmos are these ultradiffuse, or “fluffy” galaxies. One of them is named Dragonfly 44, which van Dokkum and team determined to be at a distance of 300 million light-years from Earth, in the Coma Cluster.3  That distance is easily close enough for a big telescope to see, which can see galaxies at billions of light-year distances but no one had previously noticed these fluffy galaxies before even though they are ‘so close’.

Dragonfly 44 was like “a dirty smudge on a photo of deep space.”1 And it was one of the largest and brightest galaxies of those they found. From its distance its size was determined and it was concluded that it is as big as our Milky Way galaxy, yet it only emits about 1 percent as much light. So I suppose to van Dokkum the galaxy is reminiscent of the very fragile, lightweight and transparent wings of dragonflies he likes to photograph. Continue reading