A cosmic dragonfly

A galaxy, known as Dragonfly 44, first detected in 2015 using the Dragonfly Telephoto Array in New Mexico by Professor Peter van Dokkum is now claimed to be made of 99.99% dark matter.1 It is a galaxy where very few stars can be seen. It took a two-hour exposure using one of the very biggest telescopes on Earth, one of the Gemini telescopes at the W. M. Keck Observatory in Mauna Kea, Hawaii, to get a picture of this wispy galaxy as shown in Fig. 1 below.


Figure 1: Astronomers photographed the ultradiffuse galaxy Dragonfly 44 using the Gemini Multi-Object Spectrograph (GMOS) on the 8-meter Gemini North telescope in Mauna Kea, Hawaii. Credit: Pieter van Dokkum, Roberto Abraham, Gemini Observatory/AURA

Professor van Dokkum from the Astronomy Department and the Physics Department of Yale University is not only an astrophysicist but also a photographer of insects, particularly dragonflies.It is a strange coincidence, or is it, to find that one of his particular interests in the cosmos are these ultradiffuse, or “fluffy” galaxies. One of them is named Dragonfly 44, which van Dokkum and team determined to be at a distance of 300 million light-years from Earth, in the Coma Cluster.3  That distance is easily close enough for a big telescope to see, which can see galaxies at billions of light-year distances but no one had previously noticed these fluffy galaxies before even though they are ‘so close’.

Dragonfly 44 was like “a dirty smudge on a photo of deep space.”1 And it was one of the largest and brightest galaxies of those they found. From its distance its size was determined and it was concluded that it is as big as our Milky Way galaxy, yet it only emits about 1 percent as much light. So I suppose to van Dokkum the galaxy is reminiscent of the very fragile, lightweight and transparent wings of dragonflies he likes to photograph. Continue reading

Giant molecular clouds

A look at uniformitarian assumptions in star formation

41P1BB52W1L._SX372_BO1,204,203,200_In almost any standard university astrophysics text you will find a chapter on star formation. Stars are alleged to have formed, and still do form, from giant clouds of molecular hydrogen gas. That is the standard party line. Thus it follows from standard big bang thinking that they were not created by the Creator on the fourth day of Creation week as outlined in Genesis 1, but naturally condensed out of gas (and dust) under the force of gravity only.

Nowadays you can read about dark matter as the seeds of the formation of galaxies and hence stars.1  But dark matter is still just a hypothetical substance. So how does star formation stack up without invoking such stuff? What physics can explain the alleged collapse of giant molecular clouds (GMC) to form stars? What were/are the typical explanations for star formation when dark matter was/is not assumed? And what unprovable uniformitarian assumptions are required?

To discover the answer to these questions I went to (and hence I quote extensively from) a standard 1996 first year university astrophysics text “An Introduction to Modern Astrophysics” (1st Edition) by Carroll & Ostlie,hereafter referred to as Carroll & Ostlie. I also looked at what the authors might have added in terms of overcoming some of the problems for star formation, a decade later, in their 2nd Edition, and found no substantive improvements.3,4

Carroll & Ostlie write:

“In some sense the evolution of a star is cyclic. It is born out of gas and dust that exists between the stars, known as the interstellar medium (ISM).”5 (emphasis in original)

Continue reading

Is Dark Matter the Unknown God?

CM Title imagePublished in Creation magazine 37(2):22-24, 2015.

Over years of researching cosmology and astrophysics, I have argued that ‘dark matter’ is a sort of ‘god of the gaps’,the ‘unknown god’. It is proposed mainly to rescue the standard big bang model from problems when a mismatch is found between the theory and some observations. However, secular cosmogonists (scientists who study the beginning of the universe) usually believe the big bang worldview to be correct as well as all its associated astrophysics. So they must postulate something invisible to explain the discrepancy. This ‘something’ is ‘dark matter’, a hypothetical substance that emits no light or radiation, so cannot be seen.

Several years ago, astronomers claimed that they now had direct empirical proof of the existence of ‘dark matter’.2 This was dutifully repeated in the popular media.3 It was claimed that this demolishes the criticisms of ‘dark matter skeptics’. The section entitled “Dark Matter Proof?” (below) explains this further, and shows how there are many competing explanations for the same evidence. Continue reading