Synchronised dance of dwarf galaxies stumps big bang boffins

Dwarf galaxies around our galaxy the Milky Way, the Andromeda galaxy and now Centaurus A galaxy provide further evidence that the big bang belief is ‘baloney’. These dwarf galaxies have now been shown to orbit their parent galaxies in a synchronized manner, whereas according to the big bang idea, that should just not be the case.

The galaxy Centaurus A is viewed by the European Southern Observatory in 2012. Scientists studying the galaxy and several dwarf galaxies surrounding it are stumped by their behavior. (AFP photo / ESO)

The standard big bang cosmology has the formation of galaxies resulting from the collapse of a chaotic cloud of matter. As a result, it is expected from a secular worldview, that when large galaxies formed, such as our Milky Way galaxy and the galaxy Centaurus A, that small satellite dwarf galaxies would form around them but that their orbits would be essentially random, reflecting the chaotic nature of their origin.

In an online article on this recent discovery we read (all bold emphases in citations from this article are my additions):1

The model predicts that during formation, dwarf galaxies should both appear and move randomly around their host galaxies.

“There should be pure chaos and not order,” said Müller. “To find everywhere we look this extreme order where we expect disorder — this is strange.”

The big bang has long needed the hypothetical, never-observed stuff known as ‘dark matter’ and ‘dark energy’ to make it work. This latest discovery just compounds the difficulties, even with these ‘fudge factors’ already in place. But if they don’t assume dark matter they would not get a galaxy to form. And when they do assume its presence in the galaxy the modelling indicates that several large satellite galaxies should form with chaotic orbits.

Note the admission in what follows about ‘tooth fairies’ in regard to dark matter and dark energy. Also, the comment about the standard big bang cosmology collapsing “like a house of cards” if there continues to be no evidence of these:1

“At this point, there is a mountain of such contradictory details that we’ve mostly swept under the proverbial rug,” McGaugh said. “Dark matter and dark energy have been around so long that people forget that we backed into them. They’re tooth fairies that we invoked early on to make things work out.” And if no one finds evidence of dark matter, he said, then “the paradigm collapses like a house of cards.”

This is what I have been warning about for some time.  The article goes on:

So perhaps Müller and his team have found yet another statistical outlier, or perhaps isolated galaxies work differently from large groups of galaxies. Or maybe they have found yet another problem with the generally accepted theory of cosmology.

Will the supermassive black hole at the centre of our galaxy consume us all?

The headline of an online article1 posed this question: “Will Our Black Hole Eat the Milky Way?” It is a good question to ask. Should we, here on Earth, be afraid of the supermassive black hole at the centre of the Galaxy? With it acting like some sort of a super cosmic vacuum cleaner will it eventually suck up our home planet and the rest of the galaxy? The short answer is no. But let’s review why that is so, and you’ll see it is not quite the same answer that a secular astronomer would give.

Our galaxy, called the Milky Way, has a supermassive black hole at its centre. The black hole has a mass of about 4 million times the mass of the sun.2,3 The Galaxy as a whole has a mass of about 20 billion suns (assuming no dark matter4,5), which is about 5,000 times the mass of the super-massive black hole. This makes the mass of the black hole 0.02% of the mass of the whole galaxy. It’s very small but also the stars around the black hole, at the centre of the galaxy, remain in very stable orbits. Few are consumed by the black hole, and those which are, represent a very small consumption of the mass of the whole galaxy as a function of time.

So don’t worry. You have absolutely nothing to worry about. The amount of time it hypothetically would take the black hole to consume the Galaxy is practically longer than the age of the Galaxy, assuming only natural processes of decay, and collision with any nearby galaxies.

Essentially that supermassive black hole, located near Sagittarius A* (see Fig. 1), presents no problem just sitting there at the centre of the Galaxy. The orbits of the stars around it are stable.

sgrastar

Figure 1: Sagittarius A*. Credit: Chandra

Back in the 1970s, the astronomers Bruce Balick and Robert Brown realized that there was an intense source of radio emissions coming from the very center of the Milky Way, in the constellation Sagittarius. They designated it Sgr A*. The asterisk stands for exciting.1

In 2002, astronomers observed that there were stars zipping past this object, like comets on elliptical paths going around the Sun. Using Newtonian physics the mass of the central object can be calculated from the speeds of the stars orbiting, though Einstein’s relativistic physics is more accurate. So even though the central object could not be seen directly its mass could be calculated. And because of the permissible size that such a central object could be its density can be estimated. The only possible object with such density and gravity to affect the orbital speeds of the observed stars means it must be a black hole. In this case, it worked out that the black hole must have a mass several millions times the mass of our own sun. See Fig. 2. Continue reading

Why is Dark Matter everywhere in the cosmos?

A product of the Dark Side

sombrero-galaxy

Sombrero Galaxy Credit: NASA/ESA and The Hubble Heritage Team (STScI/AURA)

Why is dark matter assumed to exist in the cosmos? From reading news headlines you would think it has been clearly identified and that we now know so much about this once elusive stuff. It has been sought in many different laboratory experiments for more than four decades now, but never found. Why then are astronomers so confident it is out there? Let me try to put this into context and I hope it will become clear. Continue reading