Chemistry COVID pandemic Science

Viral Mutations and the Risk of ‘Second-hand Malnutrition’

Orthomolecular Medicine News Service, September 13, 2021

by Michael Passwater

OMNS (Sept. 13, 2021) The New York Times recently quoted Michael Osterholm, an expert epidemiologist at the University of Minnesota, acknowledging, “We still are really in the cave ages in terms of understanding how viruses emerge, how they spread, how they start and stop, why they do what they do.” [1] While it is true of many topics that new studies often lead to more questions than answers, this topic has special importance to the human experience. We must accelerate our understanding of the complex interactions between humans and viruses to survive and to improve our experience on Earth.

Fortunately, over the past three decades, brilliant pioneers including Ethan Will Taylor, Melinda Beck, and Caroline Broome have been diligently pointing the way out of the cave. The biochemistry is complicated, the genetics is even more complex, and the terminology is unfamiliar. But the message is too important to hide in a library. It demands attempts to understand and communicate their findings. It may require a shift in thinking, and a shift in actions.

Readers of the Orthomolecular Medicine News Service appreciate the importance of good nutrition to keep our bodies healthy. Let’s shift our attention for a moment to explore the impact of nutrition on an invading virus. [2,3] RNA viruses are responsible for many of the most devastating infectious diseases of our time – Ebola, Dengue, Influenza, Hepatitis C, Polio, Zika, SARS, MERS, and SARS-CoV-2, among others. However, in addition to being so incomplete that they are fully dependent on invading host cells to replicate themselves, RNA viruses are also primitive in ways that make them unstable. Their replication process is rapid, error-prone, and devoid of the nucleic acid and protein folding proof-reading enzymes used by advanced organisms to minimize mutations and mis-translations during nucleic acid replication and protein production. As a result of this instability, truly pure strains of a virus are rarely found in nature. Viruses tend to exist as mixtures of closely related variants, sometimes referred to as a “quasi-species”.