A world without WIMPs

There was talk over lunch and coffee of dark forces, dark photons, and dark neutrons.1 (emphasis added)

This is the extent of what is actually known about dark matter and any other entities from the dark sector of particle physics.  At a workshop where more than 100 physicists took over the University of Maryland, titled “US Cosmic Visions: New Ideas in Dark Matter,” attendees were encouraged to think more broadly to solve the vexing problem of the non-detection of dark matter particles in all experiments that have ever been tried for the last 40 years, at least.

They spoke of axions and other dark-matter candidates so lightweight that they would be detected as waves, and of particles so heavy that they would clump together and encounter Earth only occasionally as a vast invisible glob.1

Despite impressive sensitivity, dark-matter detection experiments such as Large Underground Xenon (detector array above) have not found any evidence of WIMPs. Credit: C. H. Faham/LUX

A recalibration for the dark-matter community

For decades physicists have been fixated on the putative WIMP, a Weakly Interacting Massive Particle, which allegedly has a tendency to intermittently mingle with ordinary matter via the weak force. WIMPs have been alleged to inhabit our part of the Galaxy but all experiments, like the Large Underground Xenon (LUX) detector array, have failed to find any trace of their existence.  Theorists developed ideas that WIMPs might be the lowest mass yet stable supersymmetric particle, called the neutralino but experimentalists with vast, exquisitely sensitive underground detectors such as the LUX array or using the powerful particle accelerator the Large Hadron Collider (LHC) found no such particles though they were meant to be constantly streaming stealthily through our planet. Now, Continue reading

The Big Picture: On the Origins of Life, Meaning and the Universe Itself?

Review in brief of the book: “The Big Picture, On the Origins of Life, Meaning and the Universe Itself,” by Sean Carroll a theoretical physicists at the California Institute of Technology. The book is the winner of the 2013 Royal Society Winton Prize for Science Books.

Front cover of book. Published by Oneworld Publications, London, 2016, 470 pages.

On the inside book cover these questions are written:

Where are we? Who are we? Do our beliefs, hopes and dreams mean anything out there in the void? Can human purpose and meaning ever fit into a scientific worldview?

Carroll’s message in this book is that there is no ultimate purpose, we are only the product of matter and material forces, there is no meaning to life, there is no afterlife and meaning and purpose do not fit into any scientific worldview. But the author tries to dress it up saying that it’s what you put into your life that counts. Beauty is found in the observer. But he cannot escape his own bondage because his worldview ultimately does not allow for intrinsic meaning or purpose. He is just dead in the end.

There is nothing new in this book but a lot of atheistic philosophy stemming from Enlightenment philosopher David Hume. The author uses circular reasoning and begging the question. By assuming there is no Creator because He is not needed in the universe, to cause it or operate within it, and by assuming everything in the past evolution of the universe, and life in it, is explained by man’s current knowledge (Darwinian evolution of mutation and natural selection) then everything can be explained how it came to be. The universe needs no reason to exist. It simply is. Life needs no reason, it simply is. There was nothing before time began in the big bang so no question can be asked what was before? There is no First Cause because either the universe came into the existence with the beginning of time itself, or, time is fundamental and always existed so from it and the laws of physics the universe spontaneously arose from some quantum fluctuation. Now that we are smarter we have become to understand this true fact.

He talks of methodological empiricism as the correct way to learn the truth about the universe but he offers no direct empirical evidence for the origin of the universe in a big bang, or for the initial alleged low entropy state it started in, or for the spontaneous origin of life by random chance, or for the alleged Darwinian evolution of living organisms by natural selection over eons of history. We are essentially asked to just believe these as given facts as much as the author seems to. Only he offers up stories to justify his beliefs. As a book alleged to give the Big Picture of the Universe and all life in it, it fails on the very premise the author sets out to use—direct observation of the world to discover the truth. Continue reading

Francis Filament: a large scale structure that is big, big, big bang trouble.

With the development of better and better large optical telescopes there is one big bang problem that is not so often talked about. It is one we call an horizon problem. Not the infamous horizon problem for infrared photons allegedly redshifted down to the 3-degree-above-absolute-zero temperature of the Cosmic Microwave Background (CMB) radiation, but an horizon problem for structure formation in the big bang universe.

As telescopes push the limits and detect more objects at higher and higher redshift they also detect what are claimed to be larger and larger structures. These structures (clusters and long filaments of galaxies) are believed to have formed very quickly after the big bang.

Various structures have been found–one, the Francis Filament of 37 galaxies at redshift z = 2.38, is discussed in the article below. However, since that was published there have been more such discoveries that are allegedly even larger than the Francis Filament: the Huge-LQG (73 quasars) though at a lower redshift (z = 1.27) and hence allegedly seen a billion years later; and another so big it allegedly would take light 10 billion years to traverse it.

The question then arises: How did the matter move across such large distances in the very short cosmological time available after the alleged big bang fireball cooled? Expansion of space is not the answer. But this presents a particle horizon problem for the big bang theorists. The best answer that can be provided is cosmic variance: because we sample too small a region of space, at these enormous distances, there are other galaxies not yet seen and the structures that are apparently seen are just part of the random distribution of galaxies in the wider picture, which cannot be seen as yet. And thus it is alleged that the structures being viewed are not a contiguous structure. But this is an appeal to the unobserved and the belief system that the big bang story is correct. It is used to fill in where the observations fail.

The following is slightly edited from an article more than ten years old now but it illustrates the problem. My original article first appeared as “Francis Filament: a large scale structure that is big, big, big bang trouble. Is it really so large?” in the Journal of Creation 18(1):16-17, 2004.

Image 1: Caption from NASA web article. This is a computer artist’s illustration of a giant but remote galaxy string discovered recently. The fuzzy, bright areas in the cube in Images 1 and 2, represent galaxies discovered about 10.8 billion light-years away in the direction of the southern constellation Grus (the Crane). [Big bang] astronomers believe these galaxies are members of a much larger structure at least 300 million light-years long and 50 million light-years wide. Since light took 10.8 billion years to traverse the distance between the galaxy structure and Earth, we see the structure as it appeared when the Universe was young, just a fifth of its current age. This new structure defies current models of how the Universe evolved, which can’t explain how a structure this big could have formed so early. (emphasis added)

‘From a galaxy far, far away comes a stunning new discovery’ so begins the article of science reporter Rosslyn Beeby of the Canberra Times (Australia), Thursday, 8 January 2004. The article continues with some sensational claims:

Existing theories about the formation of the universe have been challenged by a sensational new discovery—the existence of an enormous string of galaxies 300 million light-years long and 10,800 million light-years from Earth.

ANU astronomer Dr Paul Francis led an international research team which discovered the galaxies … Their discovery defies accepted theories of how the universe evolved. Current theories cannot explain how such an enormous galaxy string could have formed at such an early stage in the evolution of the universe.

Scientists claim the universe was formed during the Big Bang—a cosmic explosion that hurled matter in all directions—about 13.7 billion years ago.

“There simply hasn’t been enough time since the Big Bang to form structures this colossal,” Dr Francis said. “In three billion years matter should be able to move 10 million light years at most—you can’t make something that’s 300 million light years long in the time that’s given … It’s impossible.”

Continue reading

Has the dark matter mystery been solved?

Unseen dark matter has been invoked several times to solve problems in astrophysics and cosmology. Historically the most significant problem has been the rotation curves of galaxies, particularly spiral galaxies. Using the Doppler Effect the speeds of the stars and gases in the disk regions of spiral galaxies can be measured. See Fig. 1.

By now hundreds of thousands of galaxies have been measured this way. What is observed is that the speeds of the stars, and the gases beyond where the stars are observed, are much greater than it would appear Newtonian physics allows for.

Figure 1: Edge on spiral galaxy and a rotation curve. Speeds of stars measured from the centre of a galaxy like this, as a function of distance in light-years. Using carbon-monoxide (CO) as a tracer gas the speeds of gas in the rotating disk can be also measured where there are no visible stars (labelled “No Stars”).

As a result it has been suggested that there is an invisible halo of cold non-interacting matter. This putative invisible halo has the needed gravitational effect on the stars and gases but it cannot be seen, hence it is called dark matter. Dark matter is alleged not to be normal atomic matter, made from protons and neutrons (which are known as baryons), but some sort of slowly moving (cold) exotic non-baryonic matter. Weakly Interacting Massive Particles (WIMPs) were suggested. Continue reading

Genesis mission to the sun: Did it confirm the nebular theory of formation of the solar system?

The Genesis spacecraft mission, launched in August 2001 by NASA, was designed to observe the solar wind, particles coming from the sun, entrap a sample of those particles on substrates and safely return them to Earth. The spacecraft travelled to a point about 1.5 million kilometers (or about 1 million miles) from Earth called Lagrange point, L1, where the gravitational force of the earth is matched by that of the sun. At this location the Genesis spacecraft was well outside of Earth’s atmosphere and magnetic environment, allowing it to collect a ‘pristine’ sample of the solar wind. Genesis’ overall flight path resembled a series of loops (Fig. 1): first it circled five times around L1, called Halo orbit, where it remained for 850 days, then it moved back for a short loop around the opposite Lagrange point, L2, in order to position the spacecraft for a daylight return to Earth.

Figure 1: Genesis spacecraft mission trajectory. Credit: NASA/JPL

On board the spacecraft, ions from the solar-wind impacted the collectors at speeds over 200 km/sec and buried themselves in specially-selected materials. These samples were sealed in enclosures for their safe return to Earth in a sample-return capsule (SRC). Then during the return-to-Earth stage something went horribly wrong. On NASA’s Genesis Search for Origins website it is described as follows.1

On 8 September 2004 the SRC entered Earth’s atmosphere as planned, but its gravity switches were oriented incorrectly as the result of a design error and the parachute system failed to deploy. The high-speed wreck compromised the SRC and shattered many of the Genesis collectors.

The samples were scattered and shattered. But all was not lost it seemed.

However, the Genesis Preliminary Examination Team was able to show that, because the solar-wind ions were buried beneath the surface of the collectors, it is possible to detect and quantify elements in the solar-wind.1

Composition of original solar nebula

Thus in March 2005, Johnson Space Center curatorial staff started allocating solar-wind collectors to the international scientific community to see what could be determined from those samples. The purpose was to glean information on the composition of the solar wind, and hence to determine the chemical and isotopic composition of the original solar nebula which it is alleged formed our solar system. See Fig. 2. Continue reading

The movie “Arrival”

arrivalposterRecently I watched the 2016 movie “Arrival“. It depicts the story of the arrival, at twelve separate locations around the earth, of twelve mysterious spacecraft. The key character, a linguistics professor, Louise Banks is seconded by the military to interpret the language of alien visitors.

The movie is based on the short story “Story of Your Life” by Ted Chiang (1998).1 It was directed by Canadian filmmaker Denis Villeneuve and stars Amy Adams, Jeremy Renner and Forest Whitaker.

Here is the trailer from Paramount Pictures:

The 7-foot tall aliens, heptapods,2 which look something like octopuses with 7 tentacles and a human hand, are depicted as enormously technologically advanced on humans. Their 7 tentacles each have 7 tendrils, out of the centre of which they eject an ink-like substance. Remember octopuses produce a black ink like substance. (And you might ask why all the 7’s. It’s science fiction after all.)

Alien language and perception of time

These alien heptapods use a vocal communication that is unpronounceable by humans (classified as Heptapod A), but, as professor Banks discovers, they also have a written script (Heptapod B), which can be dissected and interpreted. But strangely enough the vocal and writing components are unrelated, in the sense that Heptapod B does not represent sound. Heptapod B is written with the ink-like substance they eject from their tendrils and they are able to manipulate it in space to form the characters of Heptapod B.

We are told that a deep understanding of their language can induce a non-linear perception of time in those who learn it. This idea is where it really gets crazy.arrival_2016_heptapod_and_doctor

The story introduces the concept of when one learns a new language, one also learns to think the same way that the producers of that language think–the Sapir-Whorf hypothesis–because one’s brain is rewired to think that way.

Then, with this new perception of time, time-like loops are introduced (really time paradoxes) where, because the professor experiences (in her thoughts or perception) the future, she gets knowledge (of future events) that she then uses to determine the future events she perceives.

The concept here of our perception of time does have some basis in real physics. It is still an open question of why do we remember the past and not the future. That might sound strange to some but most of the laws of physics are time reversible. The Second Law of Thermodynamics, where entropy never decreases in a closed system, but generally increases, is an exception and the primary reason we always perceive the forward arrow of time.

However, for particle physics (including electromagnetism) there is no preference to which way time flows. Physicists call this a symmetry. And in this movie this is highlighted by the name, Hannah, of the yet to be conceived daughter of Prof. Banks, about whom she experiences future memories. The word “HannaH” is a palindrome–a sequence of letters or characters that can be read either forward or backward and produce the same word.

arrival-movie-symbolsHeptapod B is written in a circular way and is palindromic. At least that is what I understood it was intended to be. Looking at one of the alien sentences (on the right) it does not seem to have reversible symmetry, in the structures that form their words (spiky bits that stick out), though, of course, a circle is not linear in one sense as it is represented on a plane.

Of course, this story is just that, a story and total fiction. Nevertheless, it is an entertaining one.  Continue reading

Materialists believe in dark unseen life

Awhile ago I wrote about Lisa Randall, Professor of Science at Harvard University, a theoretical physicist and cosmologist, who proposed that the dinosaurs went extinct due to the actions of unseen dark matter.¹ There now appears again an article in the popular science magazine Nautilus with the title “Does Dark Matter Harbor Life? An invisible civilization could be living right under your nose.”² It would appear to be excerpted from Randall’s book Dark Matter and the Dinosaurs. In the article Randall asserts that we may, in fact, be kind of racist against dark matter, well, at least, we are biased towards ordinary matter, where, she claims, in fact, that dark matter is the stuff that holds galaxies together so it is really important stuff.

The common assumption is that dark matter is the “glue” that holds together galaxies and galaxy clusters, but resides only in amorphous clouds around them. But what if this assumption isn’t true and it is only our prejudice—and ignorance, which is after all the root of most prejudice—that led us down this potentially misleading path?

People in foreign relations make a mistake when they lump together another country’s cultures—assuming they don’t exhibit the diversity of societies that is evident in our own. Just as a good negotiator doesn’t assume the primacy of one sector of society over another when attempting to place the different cultures on equal footing, an unbiased scientist shouldn’t assume that dark matter isn’t as interesting as ordinary matter and necessarily lacks a diversity of matter similar to our own.² (emphasis added)

randall-article

Illustration by Jackie Ferrentino from Nautilus article, representing (I assume) dark life.

She goes on to promote the possibility of dark life, invisible creatures living on dark planets around dark stars in dark parts of galaxies. She suggests dark matter may be much more than just amorphous matter, but have a rich life with dark forces and therefore this implies a dark invisible universe of creatures we cannot detect. Sure sounds like good material for a sci-fi story.

Partially interacting dark matter certainly makes for fertile ground for speculation and encourages us to consider possibilities we otherwise might not have. Writers and moviegoers especially would find a scenario with such additional forces and consequences in the dark sector very enticing. They would probably even suggest dark life coexisting with our own. In this scenario, rather than the usual animated creatures fighting other animated creatures or on rare occasions cooperating with them, armies of dark matter creatures could march across the screen and monopolize all the action.

But this wouldn’t be too interesting to watch. The problem is that cinematographers would have trouble filming this dark life, which is of course invisible to us—and to them. Even if the dark creatures were there (and maybe they have been) we wouldn’t know. You have no idea how cute dark matter life could be—and you almost certainly never will.

Though it’s entertaining to speculate about the possibility of dark life, it’s a lot harder to figure out a way to observe it—or even detect its existence in more indirect ways. It’s challenging enough to find life made up of the same stuff we are, though extrasolar planet searches are under way and trying hard. But the evidence for dark life, should it exist, would be far more elusive even than the evidence for ordinary life in distant realms.

Dark objects or dark life could be very close—but if the dark stuff’s net mass isn’t very big, we wouldn’t have any way to know. Even with the most current technology, or any technology that we can currently imagine, only some very specialized possibilities might be testable. “Shadow life,” exciting as that would be, won’t necessarily have any visible consequences that we would notice, making it a tantalizing possibility but one immune to observations. In fairness, dark life is a tall order. Science-fiction writers may have no problem creating it, but the universe has a lot more obstacles to overcome. Out of all possible chemistries, it’s very unclear how many could sustain life, and even among those that could, we don’t know the type of environments that would be necessary.² (emphasis added)

Continue reading