Why should baryons define where the dark matter is? Another dark matter problem

A research paper1 recently accepted for publication in Physical Review Letters titled “The radial acceleration relation in rotationally supported galaxies”2 highlights a discovery that is bad news for dark matter. It certainly does not strengthen the case for halo dark matter around spiral galaxies.

The research team, McGaugh et al, took data for 153 spiral disk galaxies from the Spitzer Photometry and Accurate Rotation Curves (SPARC) database that represents spiral galaxies of all types and morphologies, from very bright to very low surface brightness disks. It included representative spiral galaxies that would be assumed to contain a very high fraction of dark matter at very low orbital accelerations to those with very little dark matter at high orbital accelerations. These galaxies are all assumed to be rotationally supported, which means their disks are assumed to be gravitationally bound by the included matter inside any radial distance (R) from the centre of the galaxy. The speeds of the stars and gases (V) as a function of their measured radial distance (R) determines what is known as a rotation curve V(R). See Fig. 1.

In this paper the observed acceleration, gobs, at each radial distance R from the centre of the chosen galaxies, was calculated from the measured values of V(R) and R for each galaxy, totalling 2693 data points over the 153 galaxies. Also using infrared data the mass density was accurately measured at these same radial points, which permitted, via the Poisson equation, a direct calculation of the expected acceleration, gbar, due to the baryonic matter (protons and neutrons, i.e. normal matter) content within the same galaxies. No free fit parameters were used in these estimations, except a single fixed Mass-to-Light ratio of 0.5 was used across all galaxies.

fig2

Figure 1: Examples of mass models and rotation curves for individual galaxies. The points with error bars in the upper panels are the observed rotation curves V (R). The errors represent both random errors and systematic uncertainty in the circular velocity due to asymmetry in the velocity field. Each baryonic component is represented: dotted lines for the gas, dashed lines for the stellar disk, and dash-dotted lines for the bulge, when present. The sum of these components is the baryonic mass model (solid line). The lower panels illustrate the run of gbar and gobs for each galaxy, with the dashed line being the line of unity. Note that higher accelerations occur at smaller radii. From left to right each line is replotted in gray to illustrate how progressively fainter galaxies probe progressively lower regimes of acceleration.

Assuming standard Newtonian (or Keplerian) physics the acceleration due to the baryonic matter, gbar, is all we should need to correctly calculate the rotation curve of any galaxy. See Fig. 1 (which reproduces their Fig. 2). Some representative rotation curves are shown by the upper-most black circles with error bars. Quite obviously the solid blue lines—the expect rotation velocities due to the observed baryonic matter—do not follow the observed rotation curves, but fall well below, in most galaxies. This is the reason halo dark matter is invoked. See Fig. 2. Continue reading

20 big bang busting bloopers

The_Big_Bang_Theory_(Official_Title_Card)

There is about as much truth in the sitcom as there is in the actual big bang theory. Credit: Wikipedia

The following are 20 conundrums for the big bang theory for the origin of the Universe. These are problems in a universe which had no Creator God, but not in this Universe, created by the eternally existing uncreated One.

1. Where did the Universe come from? “Cosmology is not even astrophysics: all the principal assumptions in this field are unverified (or unverifiable) in the laboratory … .” Cosmologists have become “…comfortable with inventing unknowns to explain the unknown.” Dr Richard Lieu (University of Alabama, Huntsville)

2. How did nothing explode? Universe started in nothing not even space, time or energy. What fluctuated in the quantum vacuum if time did not exist and how do they know which laws of physics applied. Where did those laws come from?

3. How did stars and galaxies form? It is impossible to form a star without dark matter (or a nearby supernova, which is a chicken and egg problem). No stars means no galaxies which means no Universe. Dark matter is pure fiction!

4. The ‘Axis of Evil’ in the CMB anisotropies. Why a preferred axis? Why aligned with the ecliptic? There should be no preferred axes in the Universe. The CMB data from both WMAP and PLANCK satellites conforms a weird preference for a direction in the cosmos, which aligns with the orbit of the earth around the sun. Why?

Continue reading

A long time ago, in a galaxy far far away…so the story goes

This time the story is about a galaxy of a billion stars that is allegedly seen from a time only 402 million years after the big bang. The galaxy is called GN-z11 because it supposedly has a redshift of 11.1,1 measured with the Hubble Space Telescope (HST). That is the highest redshift assigned to any galaxy to date, and according to big bang cosmology it corresponds to a distance of about 13.4 billion light-years. It allegedly extends the time of observation of the universe back a further 150 million years than previously known. It also places the epoch of this galaxy in the period of predicted formation of a huge number of stars and galaxy formation built from these first stars formed after the alleged big bang.2

GNz11

Figure 1: That blurry image is of a galaxy so far away it dates closer to the Big Bang, from a time when the universe was a mere toddler of about 400 million years old (so reads the caption from Ref. 6) . Credit: Space Telescope Science Institute via AP.

In a new analysis of the publicly available CANDELS data3 over the GOODS fields,4 a team of astronomers, with lead author Oesch,1 identified six relatively bright galaxies with best-fit photometric redshifts z = 9.2—10.2.  But photometric redshift determinations are very model dependent and not so conclusive, so they chose the intrinsically brightest of them for 12 orbit passes of the HST, to collect grism5 spectroscopic data and more accurately measure its redshift. This galaxy (now called GN-z11) was previously labelled GN-z10-1. It was previously given a photometric redshift zphot = 10.2. It has strong emission in the infrared consistent with a very bright ultra-violet galaxy after taking in to account stretching of the source optical wavelengths down to the infrared. See Fig. 1.

The authors in their paper write:1

GN-z11 is remarkably and unexpectedly luminous for a galaxy at such an early time:

It is about three times brighter than expected for the time of its alleged existence only 400 million years after the big bang. Early in the alleged big bang history, the first stars were supposed to have formed into small nondescript galaxies. They are meant to have many ‘young’ stars but since the galaxies are not meant to be very large it also follows that they should not be very bright. They’re expected to have grown large later by mergers with other galaxies, where galaxy size is correlated with its intrinsic brightness. In this case the GN-z11 galaxy has the intrinsic brightness of a galaxy observed at a redshift near z = 7, at a time when the big bang universe is three times larger. Thus it follows that the only galaxy they have identified at the epoch of 400 million years after the big bang is three times brighter than galaxies when the universe is allegedly much older and when galaxies should be much larger and hence brighter. This means “galaxy evolution” has worked too fast on this newly discovered galaxy. It is the opposite of what is expected.

Is the measurement solid?

Continue reading

Have Population III stars finally been discovered?

What are Population III stars? In short, the alleged story is as follows:

The super-hot big bang fireball produced only hydrogen (~75%), helium (~25%) and tiny traces of lithium. So the first stars to form (given the name Population III stars) could only form from these gases. Astronomers label all elements heavier than helium as ‘metals.’  Thus they call these type of stars extremely metal-poor. But each successive generation of stars, being formed from the products of supernova explosions of the generation of stars before them, which produced all the heavier elements, became more and more metal rich. The nuclear fusion within stars during their life produced the heavier elements, the ‘metals,’ like carbon, oxygen, and nitrogen, which were released into space when the stars exploded. During the actual explosion it is theorized that the very heaviest elements were produced also. Population III stars allegedly were the first stars formed just shortly after the big bang.

Until now (as claimed) these original stars have never be observed, hence they were nothing more than hypothetical. But their existence is a big bang prediction.

Population I, II and III stars

Astronomers classify stars into three types: Population I, II and III. Population II are those generation of stars, which allegedly formed from the Population III stars and have only a low metal content. Population I stars were allegedly the last to form, hence are the youngest and hottest stars and those with high metal content. Population I and II stars were historically first identified in our Galaxy. Population I stars are found predominantly in the spiral disk of the Galaxy and Population II stars are found above and below the disk. They have other distinguishing features also but their metal content is the major distinguishing feature.

01brightestgalaxy.adapt.1190.1

Figure 1: A newly found galaxy called CR7 (seen here in an artist’s illustration) is the brightest yet known (considering its claimed distance) and may contain some of the oldest stars in the universe. Credit: ESO/M. Kornmesser

Those early-generation stars also first formed into small galaxies that later by merging with other galaxies grew larger, or so the story goes.1  Growth in galaxy size and in ‘metal’ content is called ‘galaxy evolution.’

The first generation of small galaxies was likely well in place 400 million years after the Big Bang. Following this initial phase of galaxy formation, galaxies then went through an extended phase of merging and coalescence with other galaxies, whereby they built up from masses of several thousand solar masses to billions of solar masses. This buildup process extended until the universe was roughly two billion years old. Then, due to some feedback process — now predominantly speculated to be AGN feedback — it is thought that this buildup process halted and gas accretion and star formation in the most massive galaxies halted and galaxies underwent a much different form of evolution. This later evolution continues to the present day.

This is the big bang evolution story, but it vitally needs those Population III stars or there is no story. Now it is claimed that Population III have been found in a very distant galaxy. Continue reading

Changing-look quasars

— how do they fit into a biblical creationist model?

The quasar 3C 273, which resides in a giant elliptical galaxy in the constellation of Virgo.

Figure 1a: The quasar 3C 273, which resides in a giant elliptical galaxy in the constellation of Virgo. Credit: ESA/Hubble & NASA

Quasars are very high redshift astronomical objects with broad emission line (BEL) spectra. The latter is very different to that in the usual humdrum galaxies. This means the objects redshifts and BEL spectra can be used to identify them. And because of their high redshifts they are assumed to be very distant, very luminous active galaxies with super-massive black holes at their hearts, powering them to emit prodigious amounts of radiation over all wave-bands of the electromagnetic spectrum.

Figure 1b: Spectra of quasar 3C 273 compared to the star Vega. Spectral lines are shifted towards the red end of the spectrum, from which its distance is determined using the standard CDM cosmology.

Figure 1b: Spectra of quasar 3C 273 compared to the star Vega. Spectral lines are shifted towards the red end of the spectrum, from which its distance is determined using the standard LCDM cosmology.

Most of the high redshift objects in the universe are quasars. The redshifts of galaxies and quasars when interpreted within big bang cosmology—the greater the redshift the greater the distance—means that the most distant objects are seen at a time when the Universe was youngest.1

Following big bang thinking, quasars are then considered to be just galaxies in some early stage of development—back closer in time to the big bang—than the usual spiral and elliptical galaxies we might see with much lower redshifts. The quasar 3C 273, shown in Fig. 1a, the first to be identified (discovered in the early 1960s by astronomer Allan Sandage), has been shown to reside in a giant elliptical galaxy in the constellation of Virgo. According to standard cosmology its redshift puts it at a distance of 2.5 billion light-years from Earth. Continue reading

Piercing the ‘Darkness’

—The bankruptcy of big-bang thinking and its ‘dark’ fudge factors

JGH1Six important questions are asked in regards to the alleged big bang origin of the Universe? These questions highlight the bankruptcy of big bang thinking, about the origin of the universe that needs numerous fudge factors.

Embracing the ‘darkness’ has led man to develop unprovable fudge factors to plug the holes in his failed theory. I deal with each of these:

  1. Where did the Universe come from?
  2. How did nothing explode?
  3. How did stars and galaxies form?
  4. Why does CMB ‘light’ cast no shadows?
  5. Why the ‘Axis of Evil’?
  6. What about expansion of space?

…. 14 more problems are listed but not discussed in any detail.

Six major fudge factors are highlighted as a result but there are many more. The big bang needs these unverifiable fudge factors; so why hasn’t it been discarded? The answer is simple. The alternative, for the atheist–a Creator God–is unbearable, and for the compromised theist or deist, who accepts a big bang origin for the universe, the Creator as described by a straightforward reading of the Bible, is unbearable.

An illustrated talk presented at the Creation Ministries International 2016 Creation SuperCamp at The Tops Conference Centre, NSW, 7:30 pm Monday January 4, 2016.

Video of powerpoint presentation

Continue reading

On metal abundances versus redshift in creationist cosmologies

Abstract: In creationist cosmologies do we expect to find a systematic trend of decreased metallicity in stars as a function of redshift?  Some may claim such a systematic decrease is a ‘lay down misere’1 in favour of the standard big bang model. Here I show that that is not the case, and when the assumptions are changed so does the outcome. Therefore such a claim does not automatically rule out creationist cosmologies with no such redshift dependence. First published in Journal of Creation 29(1) :3-5, April 2015. (This article is TECHNICAL.)


In astronomy, metallicity applies to all elements other than hydrogen and helium. The term ‘metal’ in astronomy describes all elements heavier than helium.2,3 A systematic trend of weighted mean metallicity as a function of look-back time in the Universe is sometimes shown in support of the standard big bang model.4 Though stated some find that this trend is not always so well supported by the observational data.5

Does this rule out certain creationist cosmologies? Take for example, Lisle’s Anisotropic Synchrony Convention (ASC) model,6 which essentially describes all galaxies with the same youthful age of about 6000 years but includes the notion of a mature creation. According to Lisle no ages of any structures in the universe should be greater than 6000 years, therefore based on evolutionary assumptions, if some object appears older due to so-called maturity, i.e. a fully formed galaxy, then that is in-built maturity that was from the creation.7 Continue reading