Confirmed: Physical association between parent galaxies and quasar families

In a paper,just published, that looked for an association between putative parent galaxies and pairs of quasars, the authors found many such quasar families, suggesting that the association is real, and not just coincidental. They used the Sloan Digital Sky Survey (SDSS) data release 7 and the 2MASS (Two Micron All Sky Survey) Redshift Survey (2MRS) Ks ≤ 11.75 mag data release to test for the physical association of candidate companion quasars with putative parent galaxies by virtue of Karlsson periodicity in quasar redshifts.

Karlsson proposed that quasars have an intrinsic non-cosmological redshift component which comes in discrete values (z= 0.060, 0.302, 0.598, 0.963, 1.410, …). However, to properly detect any physical association the candidate quasar redshift must be transformed into the rest frame of its putative parent galaxy’s redshift. (This assumes either the parent galaxy redshift is cosmological or if not that it is Hubble law related but not due to expansion of the universe.) Then the transformed redshift of the candidate companion quasar is associated with the closest Karlsson redshift, zK, so that the remaining redshift velocity component—the putative velocity of ejection away from the parent object—can be obtained.  In this manner it is possible to detect a physical association, even in the case where parent galaxies have high redshift values. If this process is neglected no association may be found. Such was done in several papers, applied to large galaxy/quasar surveys, claiming to debunk the Arp hypothesis.

Figure 1: Detected families in a 4 square degree area centered at 09h00m00s+11d00m00s. The open circles are galaxies, the filled diamonds are quasars, with lines connecting each galaxy to its detected quasar family members. The object colours indicate stepped redshift increase from black to red over the redshift range 0.0 ≤ z ≤ 5.5. The central unshaded area shows the galaxies under examination and the entire area shows the candidate companion quasars.

In this new paper, the authors used the method described above, and the detected correlation was demonstrated to be much higher than just a random association. Many such associations were found. As an example in one instance, within one 4 degree area on the sky, 7 quasar families were found to be statistically correlated with parent galaxies.  See Fig. 1 (right). The probability of this occurring by random chance was calculated as follows.

For a binomial distribution … the probability of 7 hits for one 4 square degree area is … = 1.089 × 10-9. Under these conditions, the detection of 7 families with this particular constraint set is extraordinary. [emphasis added]

Generally, the results of this paper are a confirmation of the quasar family detection algorithm described in Fulton and Arp (Astrophys. J. 754:134, 2012), which was used to analyze the 2dF Galaxy Redshift Survey (2dFGRS) and the 2dF Quasar Redshift Survey (2QZ) data sets. This means that using the SDSS and 2MRS data sets the correlation found in Fulton and Arp (2012) is further strengthened.

This means that to a very high probability, much higher than a random association, certain quasars are physically associated with lower redshift galaxies. The quasars are found in pairs or higher multiples of 2. The results further imply that these quasar redshifts indicate a real ejection velocity component and a large intrinsic non-velocity or non-cosmological redshift component. Continue reading

Francis Filament: a large scale structure that is big, big, big bang trouble.

With the development of better and better large optical telescopes there is one big bang problem that is not so often talked about. It is one we call an horizon problem. Not the infamous horizon problem for infrared photons allegedly redshifted down to the 3-degree-above-absolute-zero temperature of the Cosmic Microwave Background (CMB) radiation, but an horizon problem for structure formation in the big bang universe.

As telescopes push the limits and detect more objects at higher and higher redshift they also detect what are claimed to be larger and larger structures. These structures (clusters and long filaments of galaxies) are believed to have formed very quickly after the big bang.

Various structures have been found–one, the Francis Filament of 37 galaxies at redshift z = 2.38, is discussed in the article below. However, since that was published there have been more such discoveries that are allegedly even larger than the Francis Filament: the Huge-LQG (73 quasars) though at a lower redshift (z = 1.27) and hence allegedly seen a billion years later; and another so big it allegedly would take light 10 billion years to traverse it.

The question then arises: How did the matter move across such large distances in the very short cosmological time available after the alleged big bang fireball cooled? Expansion of space is not the answer. But this presents a particle horizon problem for the big bang theorists. The best answer that can be provided is cosmic variance: because we sample too small a region of space, at these enormous distances, there are other galaxies not yet seen and the structures that are apparently seen are just part of the random distribution of galaxies in the wider picture, which cannot be seen as yet. And thus it is alleged that the structures being viewed are not a contiguous structure. But this is an appeal to the unobserved and the belief system that the big bang story is correct. It is used to fill in where the observations fail.

The following is slightly edited from an article more than ten years old now but it illustrates the problem. My original article first appeared as “Francis Filament: a large scale structure that is big, big, big bang trouble. Is it really so large?” in the Journal of Creation 18(1):16-17, 2004.

Image 1: Caption from NASA web article. This is a computer artist’s illustration of a giant but remote galaxy string discovered recently. The fuzzy, bright areas in the cube in Images 1 and 2, represent galaxies discovered about 10.8 billion light-years away in the direction of the southern constellation Grus (the Crane). [Big bang] astronomers believe these galaxies are members of a much larger structure at least 300 million light-years long and 50 million light-years wide. Since light took 10.8 billion years to traverse the distance between the galaxy structure and Earth, we see the structure as it appeared when the Universe was young, just a fifth of its current age. This new structure defies current models of how the Universe evolved, which can’t explain how a structure this big could have formed so early. (emphasis added)

‘From a galaxy far, far away comes a stunning new discovery’ so begins the article of science reporter Rosslyn Beeby of the Canberra Times (Australia), Thursday, 8 January 2004. The article continues with some sensational claims:

Existing theories about the formation of the universe have been challenged by a sensational new discovery—the existence of an enormous string of galaxies 300 million light-years long and 10,800 million light-years from Earth.

ANU astronomer Dr Paul Francis led an international research team which discovered the galaxies … Their discovery defies accepted theories of how the universe evolved. Current theories cannot explain how such an enormous galaxy string could have formed at such an early stage in the evolution of the universe.

Scientists claim the universe was formed during the Big Bang—a cosmic explosion that hurled matter in all directions—about 13.7 billion years ago.

“There simply hasn’t been enough time since the Big Bang to form structures this colossal,” Dr Francis said. “In three billion years matter should be able to move 10 million light years at most—you can’t make something that’s 300 million light years long in the time that’s given … It’s impossible.”

Continue reading

Will the supermassive black hole at the centre of our galaxy consume us all?

The headline of an online article1 posed this question: “Will Our Black Hole Eat the Milky Way?” It is a good question to ask. Should we, here on Earth, be afraid of the supermassive black hole at the centre of the Galaxy? With it acting like some sort of a super cosmic vacuum cleaner will it eventually suck up our home planet and the rest of the galaxy? The short answer is no. But let’s review why that is so, and you’ll see it is not quite the same answer that a secular astronomer would give.

Our galaxy, called the Milky Way, has a supermassive black hole at its centre. The black hole has a mass of about 4 million times the mass of the sun.2,3 The Galaxy as a whole has a mass of about 20 billion suns (assuming no dark matter4,5), which is about 5,000 times the mass of the super-massive black hole. This makes the mass of the black hole 0.02% of the mass of the whole galaxy. It’s very small but also the stars around the black hole, at the centre of the galaxy, remain in very stable orbits. Few are consumed by the black hole, and those which are, represent a very small consumption of the mass of the whole galaxy as a function of time.

So don’t worry. You have absolutely nothing to worry about. The amount of time it hypothetically would take the black hole to consume the Galaxy is practically longer than the age of the Galaxy, assuming only natural processes of decay, and collision with any nearby galaxies.

Essentially that supermassive black hole, located near Sagittarius A* (see Fig. 1), presents no problem just sitting there at the centre of the Galaxy. The orbits of the stars around it are stable.

sgrastar

Figure 1: Sagittarius A*. Credit: Chandra

Back in the 1970s, the astronomers Bruce Balick and Robert Brown realized that there was an intense source of radio emissions coming from the very center of the Milky Way, in the constellation Sagittarius. They designated it Sgr A*. The asterisk stands for exciting.1

In 2002, astronomers observed that there were stars zipping past this object, like comets on elliptical paths going around the Sun. Using Newtonian physics the mass of the central object can be calculated from the speeds of the stars orbiting, though Einstein’s relativistic physics is more accurate. So even though the central object could not be seen directly its mass could be calculated. And because of the permissible size that such a central object could be its density can be estimated. The only possible object with such density and gravity to affect the orbital speeds of the observed stars means it must be a black hole. In this case, it worked out that the black hole must have a mass several millions times the mass of our own sun. See Fig. 2. Continue reading

Quasars exhibit no time dilation and still defy a big bang explanation

In April 2010, Marcus Chown wrote in an article entitled “Time waits for no quasar—even though it shouldfor New Scientist online,

“Why do distant galaxies seem to age at the same rate as those closer to us when big bang theory predicts that time should appear to slow down at greater distances from Earth? No one can yet answer this new question [emphasis added] … .”

mg20627554.200-1_300

Figure 1: An artist’s depiction of what a quasar is believed to be — a supermassive black hole at the centre of a galaxy.

He says no one can answer this question. But this question has already been answered before it was even asked. To understand this we need some background.

Quasars are assumed to be supermassive black holes with the mass of a galaxy2 that are the early progenitors of the mature galaxies we see around us today. See Fig. 1. They nearly all exhibit extremely large redshifts in their emitted light and the big bang community believes that these redshifts are nearly entirely due to cosmological expansion. Therefore it follows that these massive objects are extremely bright and are being observed at some stage only several billion years after the alleged origin of the Universe in the big bang. Hence, from their redshifts when interpreted as resulting from cosmological expansion of the Universe, using Einstein’s general theory of relativity, it follows that the greater the redshift the greater the effect of the distortion of time at the quasar. That is, local clocks on quasars at greater redshifts should run slower than local clocks on quasars at lower redshifts, which are interpreted to mean that they are closer to us. (This post is based on my original article “Quasars again defy a big bang explanation” published in the Journal of Creation 24(2):8-9, 2010.)

No time dilation

But that is where the problem comes in. Mike Hawkins of the Royal Observatory in Edinburgh, UK, looked at light from quasars and he found no time dilation. He used observations of nearly 900 quasars made over periods of up to 28 years. According to the article, he “compared patterns in the light between quasars about 6 billion light years from us with those at 10 billion light years away.” But the distances assigned here are actually derived from the assumed cosmology and the Hubble law. What was really measured was the redshifts of those quasars. However the problem arises because quasars scintillate or their brightness varies. This scintillation can have periods of as little as a week, or even a day. That tells us something about the size of the object at the core, since that time should be of the scale of the light-travel time across the light-emitting region.2

Chown writes,

“All quasars are broadly similar, and their light is powered by matter heating up as it swirls into the giant black holes at the galaxies’ cores. So one would expect that a brightness variation on the scale of, say, a month in the closer group would be stretched to two months in the more distant group.”

Continue reading

Is the Universe really expanding — the evidence revisited

3d expansion question markThe Hubble law, determined from the distances and redshifts of galaxies, for the past 80 years, has been used as strong evidence for an expanding universe. In 2011 I reviewed various lines of evidence for and against this claim. It included the lack of evidence for the necessary existence of time dilation in quasar and gamma-ray burst luminosity variations, angular size tests for galaxies as a function of redshift, the Tolman surface brightness test which is sensitive to expansion of the Universe, evidence that the CMB radiation is not from the background, which it should be if from the big bang fireball as alleged, intergalactic absorption lines due to hydrogen clouds and Lyman-α systems, and what they do tell us. Here I present that information again in light of my current understanding.

This review concluded that the observations could be used to describe either a static universe (where the Hubble law results from some as-yet-unknown mechanism) or an expanding universe described by the standard Λ cold-dark-matter model. In the latter case, the imposition of size evolution of galaxies is necessary to get agreement with observations. Yet the simple non-expanding (i.e. static) Euclidean universe fits most data with the least number of assumptions. I made a straw table comparison with the various lines of evidence to see how they stack up. It was found not to be definitive and hence the result equivocal. From this review it became quite apparent that there are still many unanswered questions in cosmology and it would be a mistake to base one’s theology on any particular cosmology. Far better to base you cosmology and theology on the clear narrative historical prescription in the Genesis account and elsewhere in the Scriptures. (This was first published in two parts in the Journal of Creation 25(3):109-120, 2011.)

Introduction

Ever since the late 1920s, when Edwin Hubble discovered a simple proportionality1 between the redshifts of the light coming from nearby galaxies and their distances, we have been told that the Universe is expanding. This relationship—dubbed the Hubble Law—has since been strengthened and extended to very great distances in the cosmos. Nowadays it is considered to be the established dogma of the expanding big bang universe. This means that the space that contains the galaxies is expanding and that the galaxies are essentially stationary in that space, but being dragged apart as the universe expands.

Hubble initially interpreted his redshifts as a Doppler effect, due to the motion of the galaxies as they rushed away from our location in the Universe. He called it a ‘Doppler effect’ as though the galaxies were moving ‘through space’—the space itself is not expanding but the galaxies are moving through space, and that is how some people, especially astronomers, initially perceived it. This is different to what has now become accepted, but observations alone cannot distinguish between the two concepts. Later in his life Hubble varied from his initial interpretation and said that the Hubble Law was due to some hitherto undiscovered mechanism, but not due to expansion of space—now called cosmological expansion.

The big bang expanding universe model essentially offers a coherent paradigm or explanatory framework which can, in principle, provide answers to a wide range of key cosmological questions; examples are the origin of extragalactic redshifts, the dynamical state of the Universe (i.e. not apparently collapsing under gravity), Olbers’ paradox (why is the night sky dark?), the origin of the cosmic microwave background (CMB) radiation, the origin of galaxies, and the origin of the elements. The fact that its answers to some questions are currently unsatisfactory or unconvincing does not change the basic point that such a model will always be preferred to a more limited model such as a static Euclidean universe, which does not attempt to address such questions. In this sense the big bang model is necessarily preferable regardless of one’s theological position. Continue reading

The distances to quasars

Mark 205

Figure 1: False colour image of Markarian 205, a peculiar galaxy imaged in X-rays, shown with several quasars enveloped within its hydrogen gas envelope. Credit: H. Arp, “Seeing Red”, Apeiron.

What can we say about the distances of quasars? This is an important question. According to standard big bang cosmology, due to cosmological expansion of the Universe, the very high redshifts of quasars place them at very great distances. If however even one example could be shown that contradicts the standard “greater the redshift the greater the distance” rule then it would undermine the fundamental foundation of the Standard Model of big bang cosmology. It follows that most of the very high redshift objects in the cosmos may not be so distant. And that would radically change our interpretation of the alleged big bang universe.

One such example that contradicts the Standard Model is shown in Fig. 1. The late Halton Arp spent his 60-year research career looking at peculiar galaxies, which he believed contradicted the standard big bang assumptions. Markarian 205 is such a peculiar galaxy within which are seen three quasars. Markarian 205 has a redshift of z = 0.07 but the quasars z = 1.26, 0.63 and 0.46. According to the Standard Model the high redshift quasars should be many billions of light-years behind Markarian 205, but they are clearly seen enveloped in the X-ray emitting hydrogen gas around the galaxy (as indicated by the white arrows).

Lyman-α forest

Arp’s hypothesis, that quasars and active galactic nuclei (AGNs1) have a very large intrinsic component to their redshifts, which is unrelated to their cosmic distance from Earth, is strongly rejected by the Standard Model (big bang) community. In relation to this question I received the following from a reader of my website.2

It is claimed, that the many lines of the Lyman alpha forest in the spectrum of most quasars prove that they are very far away. Also, it is claimed that increasing Lyman alpha forest lines is connected with increased magnitude of redshift, so supporting large distances. Is that observational true?

Continue reading

Changing-look quasars

— how do they fit into a biblical creationist model?

The quasar 3C 273, which resides in a giant elliptical galaxy in the constellation of Virgo.

Figure 1a: The quasar 3C 273, which resides in a giant elliptical galaxy in the constellation of Virgo. Credit: ESA/Hubble & NASA

Quasars are very high redshift astronomical objects with broad emission line (BEL) spectra. The latter is very different to that in the usual humdrum galaxies. This means the objects redshifts and BEL spectra can be used to identify them. And because of their high redshifts they are assumed to be very distant, very luminous active galaxies with super-massive black holes at their hearts, powering them to emit prodigious amounts of radiation over all wave-bands of the electromagnetic spectrum.

Figure 1b: Spectra of quasar 3C 273 compared to the star Vega. Spectral lines are shifted towards the red end of the spectrum, from which its distance is determined using the standard CDM cosmology.

Figure 1b: Spectra of quasar 3C 273 compared to the star Vega. Spectral lines are shifted towards the red end of the spectrum, from which its distance is determined using the standard LCDM cosmology.

Most of the high redshift objects in the universe are quasars. The redshifts of galaxies and quasars when interpreted within big bang cosmology—the greater the redshift the greater the distance—means that the most distant objects are seen at a time when the Universe was youngest.1

Following big bang thinking, quasars are then considered to be just galaxies in some early stage of development—back closer in time to the big bang—than the usual spiral and elliptical galaxies we might see with much lower redshifts. The quasar 3C 273, shown in Fig. 1a, the first to be identified (discovered in the early 1960s by astronomer Allan Sandage), has been shown to reside in a giant elliptical galaxy in the constellation of Virgo. According to standard cosmology its redshift puts it at a distance of 2.5 billion light-years from Earth. Continue reading