The ‘waters above’

The disks of gas, dust and debris observed with modern infrared and millimetre-wave instruments in nearby star systems are considered to act as locators to large colliding bodies. These observations are problematic for the evolutionary nebula theory of the formation of planetary systems, but can be easily interpreted from a biblical creationist worldview. By that I mean they provide evidence consistent with a Young Solar System creation scenario as described in Genesis 1.

My proposal is that these cratering bodies are analogues for the ‘waters above’, mentioned in the initial creation of the world (Genesis 1:7), which in part were used by God during the Curse and the Flood.  Under this hypothesis, the ‘waters above’ would represent all the bodies, large and small, that lay beyond Neptune in our solar system, including all the cometary material, mostly made of water ice. 

“Artist’s Impression of a Kuiper Belt Object” by NASA, ESA, and G. Bacon (STScI)

The total amount present in large colliders today only equals about 0.43 M (43% of Earth’s mass), but before the Curse it may have been as much as 100 times more.  Some of these large colliders left their mark on the earth’s surface as impact craters, as seen today from space. Some may even have triggered the Flood.  Spectroscopic analysis of the Kuiper Belt Object (KBO) Quaoar reveals that its surface comprises crystalline water ice and ammonia hydrate (NH3.H2O).  Both of these should have been destroyed by energetic particle irradiation over timescales of ten million years, so, even though that time scale is much longer than the 6000-year time scale for Genesis creation of the solar system, the present existence of these substances is evidence for a young solar system and against the significantly longer 5-billion-year timescale required by the standard nebular hypothesis.  

In addition, Quaoar’s spectrum, in the 1 to 2.5 μm band, is very similar to that of Charon, the moon of Pluto, which has long been suspected of being a captured KBO.  Evidence is thus mounting that these objects may be the remains of a watery halo as in the ‘waters above’. (This article has been edited from my article first published in Journal of Creation 20(1):93-98, 2006. Sorry, it’s a bit technical.)

And God said, Let there be a firmament [ רָקִיַע raqiya meaning expanse] in the midst of the waters, and let it divide the waters from the waters.  And God made the firmament, and divided the waters which were under the firmament from the waters which were above the firmament: and it was so. And God called the firmament Heaven. And the evening and the morning were the second day. (Genesis 1:6–8, my emphases added)

And God said, Let there be lights in the firmament of the heaven to divide the day from the night; and let them be for signs, and for seasons, and for days, and years:  And let them be for lights in the firmament of the heaven to give light upon the earth: and it was so.  And God made two great lights; the greater light to rule the day, and the lesser light to rule the night: He made the stars also.  And God set them in the firmament of the heaven to give light upon the earth, And to rule over the day and over the night, and to divide the light from the darkness: and God saw that it was good. And the evening and the morning were the fourth day’  (Genesis 1:14–19)

We see here the description of God’s creative acts on Days 2 and 4 of Creation Week.  But the question may well be asked, Where is the “water above”? as Genesis 1:7 ends with the phrase “from the waters which were above the firmament [raqiya, the expanse].”  God calls the expanse sky and this is verified when we read in verse 20 that birds fly through it, but it must also include the space above the atmosphere because Genesis 1:14, 15 and 17, says the raqiya, the expanse, contains, at least, the sun, the moon and the planets.

In 2 Peter we read (emphasis added):

For this they willingly are ignorant of, that by the word of God the heavens were of old [i.e. subsisted], and the earth standing out of the water and in the water: [i.e. formed out of water and by water]   Whereby the world that then was, being overflowed with water, perished: But the heavens and the earth, which are now, by the same word are kept in store, reserved unto fire against the day of judgment and perdition of ungodly men.  (2 Peter 3:5–7)

In a previous paper1 I suggested that the ‘waters above’ are in a halo around the solar system, locked up in the form of frozen ices, dirty comets and other large chunks of frozen material.  This formed part of a Young Solar System (YSS) model I have considered. To be consistent with Genesis creation the whole solar system must have been created essentially as we see it today. You could say that it was created ‘mature,’ if you like, but that is sort of “giving the ball away” already by implicitly agreeing with evolutionists that it looks old. Age in that sense really is a human construct and is based heavily on starting assumptions.

Clearly, from a straightforward reading of Genesis 1:2 and 2 Peter 3:5 both the earth and the ‘waters above’ were formed out of water.  The majority of the floodwaters of Noah’s Flood most likely came from the existing water created on and inside the earth, given their pre-eminence in Genesis 7:11.  It is also feasible that the waters above, in the form of icy comets, were part of the ‘windows of heaven’, and even possibly triggered the Flood.

The many impact craters on the earth, the moon and other planets suggest a period of cosmic bombardment, and their location in the sedimentary record indicates it occurred during the Flood.  Cosmic bombardment also possibly took place when God cursed the universe, and the whole order of things changed.  Further, I have suggested that these objects might play a major part in the coming judgment of the ungodly in the Day of our Lord.

Here, I speculate upon the possible position, size and composition of this halo.  I discuss it in terms of both its present condition, as well as the size it may have been before the Curse and the Flood.  I also present evidence that objects classified as KBOs by secular astronomy are the remnants of that halo.

Position and size of debris disks

The regions where dust and debris are detected in other star systems may be a guide to the region of the ‘waters above’ halo in our solar system.  This is in fact my premise here, since we have now no access to the past state of the watery halo that once was very significant around our outer solar system.

By looking at other star systems, astronomers have been able to analyze the size and extent of the associated disks of dust and debris around parent stars.  Cool, dusty debris disks around main-sequence stars have been detected using specialised telescopes, which ‘see’ at wavelengths in the near-infrared and submillimetre-wave bands.  The technique involves the fact that the dust particles are illuminated by the radiation from the parent star and reradiate (as black bodies) the radiation at the appropriate wavelengths.

The emissions, to some extent, penetrate the dust clouds and are detected by instruments on telescopes on Earth (such as the Submillimetre Common User Bolometer Array (SCUBA) camera at the James Clerk Maxwell Telescope2 on Mauna Kea, Hawaii) and in orbit on the IRAS (Infrared Astronomy Satellite3) and ISO (Infrared Space Observatory4) satellites.

Figure 1: The characteristic radius of dust seen around many stars observed within 100 pc of Earth. Left axis is the characteristic radius to the dust from the parent star. The bottom axis is the temperature of the star (black circles) and the top axis is the radius of the star (open squares).

Figure 1: The characteristic radius of dust seen around many stars observed within 100 pc (326 light-years) of Earth. Left axis is the characteristic radius to the dust from the parent star. The bottom axis is the temperature of the star (black circles) and the top axis is the radius of the star (open squares).

Dozens of such stars within about 60 pc (parsecs; 1 pc = 3.26 light-years) have been identified.  Many have a non-axisymmetric structure, suggesting a planet in the disk region.  The COBE satellite also found that clumps of dust lead and trail the earth in its orbit around the sun in a similar fashion.  In many of these cases, where a planet has been suspected, the distance to the possible planet is of the same order as the distance to Neptune in our solar system (about 30 AU).5

Zuckerman and Song provide a large amount of data for many stellar systems with dust clouds.6  In Figure 1, I have reproduced this data by plotting the characteristic orbital radii of the dust clouds (Rdust), as a function of the temperature (Tstar) and radius (Rstar) of the star.7  The radius of the dust cloud was calculated from the model Rdust = (Rstar/2)(Tstar/Tdust)2, where Rstar, Tstar and Tdust are all measured.8  The size of the dust cloud shows a clear trend as either a function of the star’s temperature or radius.  Our sun’s temperature (5,800 K) is marked by the solid line.

Reading off the graph (Figure 1), the inner and outer characteristic radii for our solar system are 10 AU and 55 AU, respectively.  A reasonable assumption is that these regions of dust also include the other (frozen) elements such as hydrocarbons, water and volatile molecules, that are often detected in spectra.  This region is consistent with the Kuiper Belt, or more precisely with a region extending from the orbit of Neptune: 30 AU, to about 55 AU.


Figure 2: The dust emission around ε-Eridani at 850 μm wavelength reproduced from figure 1 in Greaves et al.9 The star is marked by the star symbol. The system is believed to be seen almost pole on. The size of pluto’s orbit is shown for reference.

Figure 2: The dust emission around ε-Eridani at 850 μm
wavelength reproduced from figure 1 in Greaves et al. (ref. 9) The star is marked by the star symbol. The system is believed to be seen almost pole on. The size of pluto’s orbit is shown for reference.

There has been little evidence of solar systems around any star of similar spectral type as our Sun.9 However, ε-Eridani, which is relatively close at 3.22 pc, has some similar features.10  Using the SCUBA camera at 850 μm wavelengths, studies of the dust ring around ε-Eridani indicate a peak density around 60 AU with much lower emission inside 30 AU.  The mass of the ring is at least 0.01 M⊕ (1% of the earth’s mass),11 with an upper limit of 0.4 M in molecular gas from CO observations.

This total is comparable to the estimated amount of similar material in comets orbiting in our solar system (0.33 M).  Figure 2 shows the region of debris circling ε-Eridani.  This may indicate the region in our own solar system where we should look for the ‘waters above’.

Our solar system

The Kuiper Belt extends roughly from the orbit of Neptune (30 AU) to about 50 AU.12  As of 2004, more than 700 large objects of up to approximately 1,000 km (620 miles) in diameter have been identified. More than 100,000 KBO objects over 100 km (62 miles) in diameter are believed to exist.  I suggest that this is currently the region that holds most of what remains of the ‘waters above’.

The trans-Neptunian objects include both Pluto and its moon Charon, which is about 12% the mass of Pluto.  Pluto’s mass is 2 × 10–3 M and has a surface temperature of about 35–45 K.  Water is solid at this temperature, and other gases are either condensed as a liquid or frozen.  Both Pluto (diameter 2,274 km) and Charon (diameter 1,172 km) have measured densities slightly higher than water ice, consistent with other KBOs,13  which are composed of mostly ice and some rock.

Other large KBOs are now being discovered in the Kuiper Belt, such as Quaoar14 and Sedna15 that are believed to be mostly ice.  Quaoar (diameter about 1,100 km (682 miles)), at 43.6 AU, is composed mostly of low-density ices mixed with rock, not unlike the makeup of a comet.14 Sedna (diameter estimated at 1,000 km (620 miles)) ranges from 76 AU to 936 AU in a highly elliptical orbit.16  Both have masses about one third of the asteroid belt, or about 10–4 M.

Due to our proximity to the sun, direct measurement of the dust in the Kuiper Belt is difficult.  However, the indirect detection of dust is probably a marker to clouds of larger grains and clumps of frozen material in the region beyond Neptune.

If we sum the estimates of Pluto (2 × 10–3 M) and Charon (0.24 × 10–3 M) with an estimate for all KBOs (0.1 M) and the cometary material (diameters less than 10 km), we get a figure close to 0.43 M.17

Composition of the ‘waters above’

It is well known that comets are essentially dirty balls of ice,18 ranging in diameter up to 10 km (Halley’s for example).  I suggest that the term ‘waters above’ does not strictly limit our thinking to H2O—though there is a lot of that in the solar system.  We should also include other forms of ices, such as solid hydrogen (H) and oxygen (O2), both of which may be derived from water.

Spectral analysis of the surface of Quaoar in 1 to 2.5 μm band19 has indicated Quaoar’s surface is at least covered with crystalline (as opposed to amorphous) water ice and ammonia hydrate, both of which contain water.  This is consistent with the composition originally being part of the water that was separated from the ‘waters below’.  Moreover, it has been stated that both of these types of crystals should be destroyed by energetic particle irradiation over timescales of 10 million years.19  These crystals still being present, though consistent with a young solar system, is evidence against a 5-billion-year-old solar system.  To counter this, the authors, thinking within the evolutionary long-age mindset, concluded that Quaoar must have recently been resurfaced by impacts or cryovolcanic outgassing.

In addition Quaoar’s spectrum, in the 1 to 2.5 μm band, is very similar to that of Charon, which has long been suspected of being a captured KBO.  Therefore, it too contains a lot of water as well as other ices like ammonia hydrate.  Evidence is then mounting for these objects to form the remains of a watery halo as in the ‘waters above’.

It is also worth noting that both Uranus at 19 AU from the sun and Neptune at 30 AU are both composed mostly of hydrogen (85%) and to a lesser extent helium, with small amounts of methane and other gases.  Neptune is roughly 17 M and Uranus is about 14.5 M.  However, I have not included them in the ‘waters above’ in this analysis, even though they both lie within the 10–55 AU range of typical debris disks for other Sun-like stars in figure 1.

It is likely that they were created for another purpose, as they are part of the four Jovian planets.  They appear to be located where they are—outside the orbit of the inner planets, including Earth—to prevent potentially damaging large objects from hitting Earth.  Jupiter particularly (containing more mass than all the other planets combined) acts as a cosmic vacuum cleaner, attracting stray comets to crash into it rather than travelling to the inner solar system.

Problems for evolutionary models

Planetary disks, or the disks around stars that are thought to evolve into planetary systems, have not shown any strong trend with their supposed evolutionary age.20  Secular cosmologists had expected that as a star ages, its associated disk would also evolve towards solar systems like ours.  The amount of gas should decrease with time as planetesimals form and eventually become planets.  The study by Greaves of six T-Tauri stars is quoted as saying:21

The lack of strong evolutionary trends is somewhat surprising, given that the stars were chosen as an age sequence over the era up to ~ 15 Myr [million years] after which the gas is believed to disappear.  Also, the initial conditions should have been similar, given that the targets lie in a single star-formation region.  It might therefore be expected that the discs would change systematically with time, even in the limited-size sample studied here.

It seems a substantial reservoir of gas remains during the 1–10 Myr phase of the T-Tauri systems, if we are to believe that these systems are indicative of an evolutionary change.  This is a surprise to Greaves, the author of the study, who went on to declare:21

Thus the expected evolutionary trends have not been confirmed … .  The dense gas discs are generally similar in size regardless of age … and a cleared cavity is confirmed only for the oldest star.

Greaves is in the mindset that evolution of these stellar systems must take place.  But why should that be the case?  Ultimately, naturalistic thinking drives these lines of thought.  Could it be that stars and star systems do not evolve along expected lines?  The nebula hypothesis is at best very poorly constructed and has many problems as a cosmogony.  Greaves notes that only one of the studied stars shows a region in the inner solar system that is depleted of dust as expected in the model (as the proto-disk evolves the inner region is cleared out as the star blows out the gas and dust, and the larger planets suck it in etc.).

But if the creation model which I have suggested is correct, then it is possible that the nearby stars are very similar to their created forms (i.e. they have not changed significantly).1  As the study cited by Greaves was for stars in a region in Taurus about 140 pc distant, this region was possibly near the edge of the region of space I proposed experienced a massive time-dilation event.22  That event was primarily on our solar system but included regions in the surrounding space. Alternately under the biblical creationist model (following Lisle), which I proposed in more recently, there is no time dilation and all objects we see are only 6000-years old.

So a better explanation for the observed nearby systems of gas and dust is that they are little changed from the way God created them.  If so, then it is valid to make comparisons to build an idea of the location and size of the ‘waters above’.  In the study cited, the gaseous regions extended variously from a few tens of AU to 100–200 AU and sometimes more, depending on the model used to fit the data.

τ-Ceti star system

Figure 3: 850-μm image of τ-Ceti after figure 1 in Greaves.21 The central diamond indicates the star’s position. The surrounding peanut shaped region is believed to be the disk of debris seen almost end on.

Figure 3: 850-μm image of τ-Ceti after figure 1 in Greaves (ref. 21). The central diamond indicates the star’s position. The surrounding peanut shaped region is believed to be the disk of debris seen almost end on.

Available information indicates τ-Ceti is the most similar star to our sun.  It has a disk of debris surrounding it; and it is considered a ‘massive analogue’ to the Kuiper Belt.23

The τ-Ceti star is classified as a G8 V star and is located about 3.65 pc from the sun.  Its debris disk extends out to about 55 AU, according to studies of far-infrared emission using the 850 μm wavelength in the SCUBA camera.  Modelling has shown, however, that based on evolutionary assumptions there must be a population of colliding bodies (10 km to 50 km in diameter) constantly regenerating the dust and debris. Certainly in terms of the evolutionary model, this is no place for life to develop, as pointed out by Justin Taylor.24

In the standard models of planetary formation, as the nebula proto-disk evolves it flattens, and larger bodies form due to accretion.  Development of bodies far from the star is slower, so at distances such as Pluto’s the populations of large bodies should be very sparse and therefore difficult to detect.  However, particles can be continually regenerated by collisions of kilometre-sized planetesimals, which is one of the more detectable phenomena around stars.  Nevertheless, Greaves says the evolution of debris is poorly understood.

Among the stars, τ-Ceti, ε-Eridani and the sun, our sun has the least dust and debris, hence the smallest ‘Kuiper Belt’.  This makes the situation in our solar system the most conducive to life, with only a few bombardments by asteroids and comets.

Solar analogues

The sum of the colliding masses in the τ-Ceti system is about 1.2 M compared with the estimates for the Kuiper Belt of 0.1 M. The system is however claimed to be 10 Gyr [billion years] old—twice that of our solar system.  The ε-Eridani system is claimed to be 0.73 Gyr old and an analogue of the early history of our solar system (according to the evolutionary model). Assuming that these systems are not as old as claimed, we can use them as analogues of our solar system at different stages of its history, both before and after the Curse and/or the Flood.

The debris around τ-Ceti is located in a region similar to the Kuiper Belt, with most of the detected bodies orbiting at 35–50 AU (figure 3).  In this region in our solar system, cometary-type objects are found mostly as large bodies, tens of kilometres in size.  τ-Ceti may be an analogue for the pre-Flood world, with a much higher concentration of this type of cometary material.  The YSS model posits that it was the sustaining power of God that kept the debris halo in the region beyond Neptune until it was necessary for the judgment in Noah’s time.  In the post-Flood solar system, the density is much lower, and impacts with Earth are now rare.

Size and collision rate are implied in the assumptions of evolutionary age.  The star τ-Ceti is assumed to be 10 Gyr old based on spectroscopic analysis, the Main Sequence Diagram and the evolutionary model of stellar development.  What is actually observed is a blackbody spectrum for dust grains near 60 K.  The dust mass is then estimated from the 850 μm flux, 60 K temperature and the assumed opacity of the cloud.  It comes to about 20 times that in our solar system, but remains uncertain.

In one paper Greaves states:25

…the Kuiper Belt is itself enigmatic because as much as 99 per cent of the material seems to be “missing”, if the density of the primordial disc needed to form the planets is extrapolated out to ~ 50 AU.

Disregarding the evolutionary presuppositions, the pre-Curse/pre-Flood solar system may have had a much higher density of large cometary bodies, which have since cleared out of the solar system or impacted the planets and the sun.  When God separated the ‘waters above’, it is likely that He created a large halo of cometary material that was subsequently dissipated (possibly by as much as 99%) during the Curse and again during the Flood.26  This halo of cometary material, I contend, is what God created when He separated the ‘waters above’.


Observations of the near-infrared spectra of the Kuiper Belt Object, Quaoar, and the suspected Kuiper Belt Object, Charon, indicate both contain crystalline water ice and ammonia hydrate. This watery material cannot be much older than 10 million years, and upper limit from the naturalistic perspective, which is consistent with a young solar system, not with the evolutionary nebular hypothesis; that is it should be 5 billion years old.  These are quantitative results that, when added to what we already know about comets and other trans-Neptunian bodies, are exciting evidence for a young earth and the young solar system model.

If we start with a creationist worldview, the recent observations of a few nearby star systems containing significant dust and debris can give us clues to the structure of our solar system in the past.  These observations lead me to propose the present ‘waters above’ (the trans-Neptunian objects) are only a small remnant of the pre-Curse/pre-Flood ‘waters above’.  Most of this material remains in frozen ices of one kind or another.  Therefore, this model predicts that more trans-Neptunian objects and cometary type material composed mostly of water ices will be found.

The pre-Curse/pre-Flood ‘waters above’ may have comprised as much as 100 times the amount of material that now exists beyond Neptune.  If this was the case, then it comprised as much as 43 Earth masses, which would certainly have been a significant envelope of water surrounding our solar system.  A lot of this water may have been absorbed by the Jovian planets as the ‘waters above’ was disrupted during the Curse and the Flood.  Of course, some (to a much smaller extent) can be found on Earth.  This really gives a different significance to the separation of the waters on Day 2 of Creation Week.


  1. Hartnett, J.G.  Look-back time in our galactic neighbourhood leads to a new cosmogonyJournal of Creation 17(1):73–79, 2003.
  2. SCUBA and the James Clerk Maxwell telescope, wikipedia, 17 June 2015.
  3. IRAS, Wikipedia, 17 June 2015.
  4. ISO, Wikipedia, 17 June 2015.
  5. Astronomical unit (AU) is the average distance between the earth and the sun.
  6. Zuckerman, B. and Song, I., Dusty debris disks as signposts of planets: implications for Spitzer space telescope, Astrophys. J. 603:738–743, 2004.
  7. Temperature critically determines the location of planets that could support life (based on liquid water considerations).
  8. The model was checked against the distance and radii measured for more accurately known systems, e.g. τ-Ceti, and includes most stars of similar radii as our Sun.
  9. Greaves, J.S., Holland, W. S., Moriarty-Schieven, G., Jenness, T.,  Dent, W. R. F., Zuckerman, B., McCarthy, C., Webb, R. A., Butler, H. M., Gear, W. K. and Walker H. J., A dust ring around e-Eridani: analog to the young solar system, Astrophys. J. 506:L133 – L137, 1998.
  10. The comparison to our solar system is not totally valid as ε-Eridani is a so-called ‘young’ star of K2 V class, with about 0.8 solar masses.
  11. This is standard notation for an Earth mass unit, equal to 5.97219×1024 kg.
  12. Worraker, B.J., Missing: a source of short period comets, Journal of Creation 18:121–127, 2004.
  13. From this data set, we determined the Charon/Pluto mass ratio to be 0.122 ± 0.005, which implies a density of 1.8 to 2.0 g/cm3 for Pluto and 1.6 to 1.8 g/cm3 for Charon.  The resulting rock-ice fraction is in the range expected for bodies that form in a solar nebula (such as Kuiper Belt Objects).
  14. Astronomers have dubbed it ‘Quaoar’ (pronounced kwa-whar) after a Native American god.  It lies a billion kilometres beyond Pluto and moves around the sun every 288 years in a near-perfect circle.  Until recently it was just a curious point of light.  That’s all astronomers could see when they discovered it last June 2002 using a ground-based telescope.  NASA’s Hubble Space Telescope has measured Quaoar and found it to be 1300 km wide.  That’s about 400 km wider than the biggest main-belt asteroid (Ceres) and more than half the diameter of Pluto itself.  Indeed, it is the largest object in the solar system seen since the discovery of Pluto 72 years ago.  Michael Brown and Chadwick Trujillo of the California Institute of Technology, Pasadena, CA, reported these findings at the 34th annual meeting of the Division for Planetary Sciences of the American Astronomical Society in Birmingham, AL in Oct 2002.  Quaoar is greater in volume than all known asteroids combined.  Researchers suspect it’s made mostly of low-density ices mixed with rock, not unlike the makeup of a comet.  Quaoar’s mass is probably only one-third that of the asteroid belt.
  15. Presenting Sedna, a far-flung planetoid of ice and rock, 17 June 2015. It is not clear yet what Sedna is made of and because its distance from the Sun is 76 AU it is outside the Kuiper Belt. Minor planet designation number is 90377, but officially known by 2003 VB12.  This object is the most distant body known that orbits our Sun.
  16. Sedna, Wikipedia, 17 June 2015.
  17. There may be more, as yet unobserved, KBOs, but this is close to an upper limit.
  18. Comet Introduction, 17 June 2015.
  19. Jewitt, D.C., Luu, J., Crystalline water ice on Kuiper belt object (50000) Quaoar, Nature 432:731-733, 9 December 2004.
  20. Greaves, J.S.  Dense gas discs around T Tauri stars, M.N.R.A.S. 351:L99 – L104, 2004.
  21. Greaves, ref. 20, p. L103.
  22. Hartnett, J.G.  A new cosmology: solution to the starlight travel time problem, Journal of Creation 17(2):98–102, 2003.
  23. Greaves, J.S.  The debris disc around τ-Ceti: a massive analogue to the Kuiper Belt, M.N.R.A.S. 351:L54–L58, 2004.
  24. Taylor, J.K., New discovery makes habitable worlds even less likely, Journal of Creation 19(1):19, 2005.
  25. Greaves, ref. 23, p. L57.
  26. Faulkner, D., A biblically-based cratering theory, Journal of Creation 13(1):100–104, 1999.

Related Reading

2 thoughts on “The ‘waters above’

  1. “God calls the expanse sky and this is verified when we read in verse 20 that birds fly through it, but it must also include the space above the atmosphere because Genesis 1:14, 15 and 17, says the raqiya, the expanse, contains, at least, the sun, the moon and the planets.”

    I’m not qualified to debate Hebrew grammar, but from a plain reading of this passage I don’t know how one can exclude “the” stars themselves from among those bodies “in the firmament [raqiya]”, and by implication, beneath the “waters above the [raqiya]”. This interpretation seems to suffer from the same Biblical weakness as the canopy-theory, as it requires us to understand certain celestial objects (namely stars) as simply “appearing” to be “in” the raqiya when in fact they are beyond the “waters above”.

    In fact, this interpretation seems more problematic to me than the canopy-theory given that it understands (correctly, I think) raqiya to refer to both the atmosphere and space itself, but then posits that the “waters above” are also *within* the raqiya, which seems to be an outright conflict with a straightforward reading of the text.

    I’d be interested to hear your thoughts.


    • As I stated in the article “the expanse, contains, at least, the sun, the moon and the planets,” which of course means that it can be interpreted to means more than that, that is the stars, also. I have had this debate with Russ Humphreys who sticks with the argument you make that it must include the stars also. Humphreys puts the ‘waters above’ outside all the galaxies in the Universe.

      Genesis 1:16 reads

      And God made two great lights; the greater light to rule the day, and the lesser light to rule the night: He made the stars also.

      where “He made” is in italics in the KJB because the translators inserted it in there to clarify the meaning. Based on the sentence structure you could write it as:

      And God made … the stars also.

      This is in reference to the stars only. So you could interpret that on Day 4 God made all the heavenly bodies listed, but they seem to be divided into two groups: 1. solar system related bodies (sun, moon and planets) and 2. stars (hence galaxies) beyond the solar system. Also you could argue that this is language of appearance, i.e. the stars only appear in the firmament [raqiya] which you obviously don’t like. But if you use Genesis 1:20 about birds flying through the “open firmament of heaven” [raqiya] and at the same time deny language of appearance, you either have a contradiction or the birds fly through the vacuum of space. Now I am not arguing that (I agree firmament [raqiya] suggests both atmosphere and space, as stated in the article out to the edge of the solar system anyway) but Genesis 1:20 is a counter argument saying not language of appearance, birds don’t literally fly where the sun, moon and planets are located. All I am saying is that it is open to interpretation regarding the ‘waters above.’


Comments are closed.